Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature	
1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-5 1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execution	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

3-4-2. Goal setting

Appendix

Appendix	
	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internation and reference parameters and tools	onal)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters 1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-87 1-189 1-216
Chapter 2 Definition, theory, practice, and reference information of ICP(inte carbon pricing)	ernal
 2-1. Definition of internal carbon pricing 2-2. Theoretical version of internal carbon pricing 2-2-1. Consideration of price setting 2-2-2. Consideration of utilizing method 2-2-3. Consideration of internal structure and future initiatives 2-3. Practical version of internal carbon pricing 2-3-1. Introduction : Consideration of the purpose of introducing ICP 2-3-2. Consideration (1) : Consideration of ICP price 2-3-3. Consideration (2) : Consideration of the decision-making process 2-3-4. Consideration (3) : Consideration of internal structure 2-3-5. Consideration (4) : Consideration of the scope of ICP application and applicable companies 2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduct targets and investment 2-3-7. Consideration (6) : Consideration of budget management and limit on ICP 2-4. Reference information on internal carbon pricing 2-4-1. Frequently asked questions and example answers, glossary, and referinformation 2-4-2. Examples of advanced ICP implementation in Japan and overseas 2-4-3. List of companies that have introduced ICP in Japan 	2-79 ion 2-87 2-90

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Regarding the 3 steps in scenario analysis with different disclosures depending on the sector, 40 domestic and 15 oversea (in total of 55) examples aere introduced in the following slides

Sector	Company	STEP3. Identify and define range of scenarios	STEP4. Evaluate business impacts	STEP5. Identify potential responses
	Sompo Holdings, Inc.		•	•
Financial	Dai-ichi Life Holdings, Inc.		•	
Tinanoiai	The Norinchukin Bank	•	•	•
	Mizuho Financial Group, Inc.	•	•	•
Fnorm	J-POWER	•	•	
Energy	The Chugoku Electric Power Company, Inc.		•	•
	Mitsui O.S.K. Lines, Ltd.	•	•	•
Transportatio n	East Japan Railway Company		•	
	Nishi-Nippon Railroad Co.,Ltd			•
	Sekisui House, Ltd.		•	
	Tokyu Fudosan Holdings Corporation	•		
	MITSUI MINING & SMELTING CO.,LTD.			•
Materials, Buildings	KH Neochem Co., Ltd.		•	
Dullulings	JFE Holdings, Inc.	•		
	TODA CORPORATION	•	•	•
	LIXIL Corporation		•	•
	Sumitomo Forestry Co., Ltd.			•
Agriculture,	Asahi Group Holdings, Ltd.		•	
Food, and Forest	Kameda Seika Co., Ltd.		•	
Products	Kirin Holdings Company, Limited		•	
	FUJI OIL HOLDINGS INC.		•	•

Regarding the 3 steps in scenario analysis with different disclosures depending on the sector, 40 domestic and 15 oversea (in total of 55) examples are introduced in the following slides

Sector	Company	STEP3. Identify and define range of scenarios	STEP4. Evaluate business impacts	STEP5. Identify potential responses
	J. Front Retailing Co., Ltd.		•	•
_	Isetan Mitsukoshi Holdings Ltd.	•		
Trading, Retail	Mitsubishi Corporation			•
	ITOCHU Corporation			•
	ASKUL Corporation	•		
	KDDI CORPORATION			•
	NTT DATA Corporation		•	•
-	Ricoh Company, Ltd.		•	
Electricity, Machinery,	TEIJIN LIMITED			•
Communicati	Ebara Corporation Securities Report	•		•
on	Seiko Epson Corporation		•	•
	NEC Corporation	•	•	
	Panasonic Holdings Corporation	•		•
Company	Kao Corporation		•	
Consumer Discretionary,	Shiseido Company, Limited		•	•
Pharmaceuti	SEKISUI CHEMICAL CO., LTD.	•	•	•
cal or Food	Nichirei Corporation		•	•
Service	Members Co., Ltd.		•	
(other)	Recruit Holdings Co., Ltd.		•	

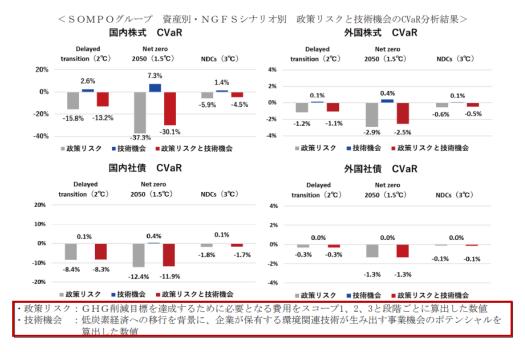
Regarding the 3 steps in scenario analysis with different disclosures depending on the sector, 40 domestic and 15 oversea (in total of 55) examples aere introduced in the following slides

Sector	Company	STEP3. Identify and define range of scenarios	STEP4. Evaluate business impacts	STEP5. Identify potential responses
	NRG Energy Inc (US)	•		•
Energy	Shell plc (UK)		•	
	Woodside Energy Limited (Australia)		•	•
	Canadian National Railway(Canada)		•	
Transportation	FirstGroup plc (UK)	•	•	
	Ford Motor Company (US)			•
	The Dow Chemical Company (US)			•
Materials, Buildings	Freeport-McMoRan Inc (US)	•		•
5	Newmont Corporation (US)	•		•
Agriculture, Food, and	J Sainsbury Plc (UK)		•	
Forest Products	Mondi Group (UK)		•	
Electricity, Machinery,	Eaton Corporation plc (US)	•		•
Communicati on	Schneider Electric SE (France)			•
Consumer Discretionary,	Burberry Group PLC (UK)		•	
Pharmaceuti cal	Unilever plc (UK)	•	•	

Example of Securities Report : Sompo Holdings, Inc. (Financial, 1/2)

Quantitatively discloses the impact of "policy risk" and "technological opportunities" on current asset management portfolio

イ.<u>移行リスク</u>


脱炭素社会への移行が短期・中期・長期それぞれにおいて、当社に及ぼすインパクトを把握するため、下表の NGFSシナリオ⁴⁹⁸を前提に、脱炭素社会への転換に向けた法規制の強化や世界経済の変化が企業に及ぼす「政策 リスク」と気候変動の緩和や適応に向けた取組みによる「技術機会」についてMSCI社が提供するClimate Value-at-Risk (CVaR) ⁴⁴を用いて、当社グループの保有資産に及ぼす影響を分析しております。詳細は、以下 「a. Climate Value-at-Risk (CVaR)」をご参照ください。

加えて、移行リスク削減に向け、脱炭素化への取組みが進んでいない企業への働きかけを促進することが重要 であることから、同社が提供するImplied Temperature Rise (ITR) ^{#5}を用いて、当社の投資先企業が2100年度 までに1.5℃の温暖化に抑える目標と整合的なGHG排出量削減目標を設定しているのかを定量的に分析しており ます。詳細は、以下「b. Implied Temperature Rise (ITR)」をご参照ください。

₩4 Climate Value-at-Risk (CVaR)

・気候変動に伴う政策の変化や災害による企業価値への影響を測定する手法の一つ。

 ・気候変動関連のリスクと機会から生じるコストと利益の将来価値を現在価値に割り引いたものであり、当社 グループの資産運用ポートフォリオにおける各銘柄の保有時価ウェイトを考慮し、2023年3月末時点における 影響度を算出。

The impact of risks and opportunities on holding assets (Domestic stocks, domestic corporate bonds, foreign stocks, foreign corporate bonds) is disclosed by each scenario.

Described the method in which the impact of each risks and opportunities were calculated

- <u>Policy risk</u> : The cost needed to achieve the GHG reduction target is calculated by Scope 1,2,3 in steps
- <u>Technological opportunity</u> : A numerical calculation of the potential business opportunities created by companies' environmental procurement technologies in the context of the transition to a low-carbon economy

Example of Securities Report : Sompo Holdings, Inc. (Financial, 2/2)

Reviewing asset portfolio and developing/providing climate risk consulting services to improve resilience

③ レジリエンス向上の取組み

ア.リスクへの対応

<物理的リスク>

損害保険契約や再保険契約は短期契約が中心であり、激甚化する気象災害の発生傾向をふまえた保険引受条件 <u>や再保険方針の見直し</u>によって、保険金支払が想定以上となるリスクの抑制が可能です。また、グローバルな地 理的分散や<u>短期・中期の気候予測に基づく定量化、長期的なシナリオ分析による重大リスクの特定・評価</u>などの 多角的なアプローチにより、物理的リスクに対するレジリエンスの確保を図っております。

<移行リスク>

自社のGHG排出量削減については、スコープ1、2、3(投融資除く)で2030年60%削減(2017年比)*1、2050 <u>年実質排出ゼロにする目標を</u>掲げております。その実現に向け、GHG排出において特に占める割合の大きい電 力に関して、LED化等の省エネへの取組みに加え、「2030年までに再生可能エネルギー導入率70%」の目標を掲 げ、所有ビルの電力を再生可能エネルギー由来に切り替えるなど、目標達成に向けたロードマップに沿って着実 に取組みを進めております。

※1 パリ協定の1.5℃目標水準(毎年4.2%以上削減)に整合する科学的根拠に基づく目標

投融資については、公社債の満期償還時にGHG高排出セクターから低排出セクターへの入れ替え促進や、株 式保有先のうちGHG高排出の上位20社を中心とするエンゲージメントの強化により、<u>資産運用ポートフォリオ</u> におけるGHG排出量を2025年までに2019年比で25%削減する目標を掲げ、移行リスク軽減に取り組んでおりま す。

イ. 機会への対応

当社グループは、気候リスクコンサルティングサービスの開発・提供、保険商品・サービスを通じた自然災害 レジリエンスの向上に取り組むほか、再生可能エネルギーの普及や取引先との協業によるカーボンニュートラル に貢献する保険商品・サービスの開発・提供に取り組んでおります。

保険引受については、ソリューションプロバイダーとして社会のグリーン移行へ貢献することを目的に2024年 度に脱炭素に資する保険商品を対象としたトランジション保険目標を新たに掲げました。また、2022年11月に PCAF(金融向け炭素会計パートナーシップ)が開発した企業保険分野のGHG排出量を計測する手法を用いて、 保険引受先でGHG排出量(スコープ1、2)を開示している企業のデータを活用し、保険引受におけるGHG排 出量の算定を行っております。

また、日本版スチュワードシップ・コードの趣旨に則り、株式を保有する企業の企業価値向上および持続的成 長に関する取組方針および状況を確認するために、損保ジャパンでは毎年ESGアンケート(「ESG/サステナビリテ ィへの取組みに関する調査」)を実施しております。2023年度は株式を保有する1,446社にアンケートを送付し、 318社から回答が得られ、議決権行使のほか、各企業側のニーズの把握・協業の機会につなげ、脱炭素を含めたサ ステナビリティへの取組みを支援しております。

さらに、ネットゼロ社会の実現に向けて、世界の様々なイニシアティブや団体等において、規制やガイダンス 策定等の議論が活発に行われております。当社グループでは、これらのルールメイキングに対して積極的に関与 しリードすることにより、社会のトランスフォーメーションに貢献するとともに、これらの取組みを通じた知見 の蓄積やレビュテーションの向上によってパートナーを呼び込むなどグループのビジネス機会の創出・拡大を図 ってまいります。

Response to Risks

✓ Physical Risks

 Review of underwriting conditions and reinsurance policies

⇒ Mitigation of the risk of insurance payouts exceeding expectations

Analysis of physical risks ⇒Quantification of risks based on short-term and mid-term climate forecasts ⇒Identification and evaluation of significant risks through scenario analysis

✓ Transition Risks

Response in line with the company's reduction targets and roadmap
 ⇒60% reduction by 2030 (compared to FY
 2017 levels)
 Not some emissions by 2050

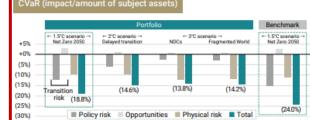
⇒Net-zero emissions by 2050

Review of asset management portfolio
 ⇒ Aiming for a 25% reduction in GHG
 emissions from the asset management
 portfolio by 2025 compared to FY 2019 levels

Opportunities

 Development and provision of climate risk consulting services Domestic Disclosure Examples : Dai-ichi Life Holdings, Inc. (Financial, 1/1)

Analysis of policy risk and opportunity and physical risk is conducted using CVaR, and the impact in each scenario is quantitatively presented in terms of "impact amount / subject asset amount


Scenario analysis

Climate change risks are expected to have a wide range of spillover pathways and could materialize over various time frames. Based on the TCFD recommendations, the Group recognizes climate change risks by classifying them into physical risks^{*16} and transition risks^{*17} and sorting them out by risk category. The Group assumes the examples shown in the table on the right as climate change risks that could materialize over a time frame of about three years in the short term and more than 10 years in the long term, and conducts scenario analyses for underwriting risks and market/credit risks.

As part of our efforts to understand risks related to claims and benefit payments, we have been analyzing the relationship between temperature and Dai-ichi Life's claims and benefits since FY2020, in cooperation with Mizuho–DL Financial Technology Co., Ltd. Please refer to the Sustainability Report published in the autumn of 2024 for details.

In addition, we use MSCI's CVaR methodology for analyzing those market and credit risks that constitute physical and transition risks for invested assets. The aggregated CVaR was (13.8%) for the NDCs scenario*¹¹⁸ with the highest physical risk and (18.8%) for the Net Zero 2050 scenario with the highest transition risk. In comparison to the benchmark, superior results were shown in the Net Zero 2050 scenario in terms of both transition and physical risks. In addition, the implied temperature rise (ITR)*¹⁹ of the Group's portfolio was 2.3°C.

Risk categories	Examples of major physical and transition risks
Underwriting risk	[Physical risk] Risk of an increase in insurance claims and benefits paid due to an increase in mortality, etc., caused by the spread of heat stroke and infectious diseases resulting from rising temperatures
Market/credit risk	[Physical risk] Risk of deterioration in the financial condition of a credit recipient due to damage to business facilities caused by extreme weather or disruption of supply chains in the manufacturing industry [Transition risk] Risk that the prices of assets held will decline as businesses are affected by decarbonization and as society increasingly chooses to invest in decarbonization
Liquidity risk	[Physical risk] Risk of increased insurance payouts due to extreme weather conditions and risk of inability to conduct sufficient market transactions due to market disruptions caused by natural disasters
Operational risk	[Physical risk] Risk of damage to data centers, business offices, and other locations necessary for operations due to extreme weather conditions, resulting in the suspension of operations [Transition risk] Risk of financial losses due to fines, lawsuits, etc., stemming from inadequate measures to address climate change
Reputational risk	[Transition risk] Risk that our business will be negatively impacted by being evaluated as inappropriate by stakeholders (due to our inadequate climate change initiatives), continued relationships with business partners that are insufficiently environmentally conscious, or other factors.
CVaP (impact	t/amount of subject assets)

Subject assets are Dai-ichi Life's equities and corporate bonds and Dai-ichi Frontier Life's corporate bonds, totaling approximately ¥10 trillion. Benchmarks are NOMURA-BPI corporate bonds (for domestic corporate bonds), Barclays Global Corporate Bond Index (for foreign corporate bonds), TOPIX (for domestic equities), and MSCI ACWI (for foreign equities). Data: As of March 31, 2024 Source: Reproduced by permission of MSCI ESG Research LLC Physical risk is measured using the RCP & 5 scenario and transition risk using the NGFS scenario.

For details, see our Sustainability Report published in the autumn of 2024

https://www.dai-ichi-life-hd.com/en/sustainability/report/ index.html

✓ Insurance Underwriting Risk

- Analysis of the relationship between temperature and Dai-ichi Life's insurance payouts and benefits
- Analyzed physical risks and transition risks of investment assets using the CVaR (Climate Value-at-Risk) method
 - The impact of each scenario on asset holdings is shown as "Impact / Total Assets"
 - The analysis shows that the impact of transition risk is small, while physical risk is large in the 3°C scenario

Domestic Disclosure Examples : The Norinchukin Bank (Financial, 1/5)

Six unique scenarios were developed by referencing multiple external scenarios for each analytical targets

 Scenarios are divided into two axes of "Dynamic" and "Static" for each temperature zone scenario of "NZE50", "Delayed Transition" and "Current Policies" and illustrated in 6 patterns
 The external scenarios referred to for each analysis are also clearly indicated

Step 1		Step 2	Step 3
We selected sectors	and clients	Based on the data from Step 1,	In this step, we conducted an
for analysis based o		we conducted an analysis using	analysis of the medium- to long-
related risk assessm		the quantitative transition risk	term financial condition of each
and the Bank's inve		model.*1	target company. Our calculations
financing portfolio.		*1 Model based on UNEP-FI's Pilot Project	
		on TCFD scenario analysis in banks	expenses, investments, etc.*2
prepared individual			*2 The term of the analysis differs depends
data and external so	cenario data		on the target sector. We analyzed
see right).			energy-related sectors through 2042, which is in line with the period for which
	External	Quantitative transition risk model	selected scenario data are provided. We
for individual companies	scenario data	analysis	analyzed other sectors through 2050.
companies			Forecast of the financial condition of
			each company, reflecting scenarios
ا بلغت ا			
1111	<u> </u>	Ⅲ] 三	<u>~</u>
ч—н			JTTT ===
External Scenari	OS (Future proj∉	ections by international organizations)	Transition Risk Analysis
		Increase in renewable energy in the	Impact on Companies
External Scenario Technological Innovation		Increase in renewable energy in the composition of power generation	
Technological Innovation • Development of cl	lean	Increase in renewable energy in the	Impact on Companies
Technological Innovation • Development of cl energy technology	lean Y	Increase in renewable energy in the composition of power generation facilities in each country	Impact on Companies (Example)
Technological Innovation • Development of cl	lean Y	Increase in renewable energy in the composition of power generation	Impact on Companies (Example) Renewable energy
Technological Innovation • Development of cl energy technology • Increase in renewa	lean Y	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation • Development of cl energy technology • Increase in renewa energy	lean Y	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices	Impact on Companies (Example) Renewable energy
Technological Innovation • Development of cl energy technolog • Increase in renewa energy	lean Y	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation • Development of cl energy technology • Increase in renewa energy	lean Y	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation - Development of cl energy technology - Increase in renews energy Government Regulations - Tax incentives for electric vehicles	lean y bble	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation • Development of cl energy technology • Increase in renewa energy Government Regulations • Tax incentives for	lean y bble	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation - Development of cl energy technology - Increase in renews energy Government Regulations - Tax incentives for electric vehicles - Introduction of a c	lean y bble	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation • Development of cl energy technology • Increase in renewi energy Government Regulations • Tax incentives for electric vehicles • Introduction of a cl tax	iean yable	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc.	Impact on Companies (Example) Renewable energy production overseas
Technological Innovation • Development of cleanergy technology • Increase in renewise energy • Development of cleanergy • Margulations • Tax incentives for electric vehicles • Introduction of a cleanergy • Introduction of a cleanergy • Madysis Target	lean Yable arbon	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc.	Impact on Companies (Example) Renewable energy production overseas Overseas sales Costs, including carbon tax
Technological Inovation - Development of cl energy technology - Increase in renewa energy Government Regulations - Tax incentives for electric vehicles - Introduction of a c tax Analysis Target argy (Electricity, Oil-Gas-	lean Yable arbon	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc. Scenario C IEA World Energy Outlook	Impact on Companies (Example) Renewable energy production overseas Overseas sales Costs, including carbon tax
Technological Inovation - Development of cl energy technology - Increase in renewa energy Government Regulations - Tax incentives for electric vehicles - Introduction of a c tax Analysis Target argy (Electricity, Oil-Gas-	lean Yable arbon	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc. Scenario C IEA World Energy Outlook	Impact on Companies (Example) Renewable energy production overseas Overseas sales Overseas sales Costs, including carbon tax complementary Scenario
Technological Innovation Development of cl energy technology Increase in renews energy Government Regulations Tax incentives for electric vehicles Introduction of a c tax Analysis Target	lean yable arbon Selection NGFS • Current Policie	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc. Scenario EA World Energy Outlook ©DS stands for Stutenta STEPS stands for Stutenta STEPS stands for States FAO Food and agriculture J	Impact on Companies (Example) Renewable energy production overseas Overseas sales Overseas sales Costs, including carbon tax complementary Scenario
Technological Innovation Development of cl energy technology Increase in renews energy Government Regulations Tax incentives for electric vehicles Introduction of a c tax Analysis Target ergy (Electricity, Oil-Gas- aa) od and agriculture.	lean yable arbon Selection	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc. Scenario EA World Energy Outlook ©DS stands for Stutenta STEPS stands for Stutenta STEPS stands for States FAO Food and agriculture J	Impact on Companies (Example) Renewable energy production overseas Overseas sales Costs, including carbon tax complementary Scenario 2021–SDS, STEPS bid Devidopment Scenario Projections to 2050–TSS, BAU
Technological Innovation Development of cl energy technology Increase in renews energy Government Regulations Tax incertives for electric vehicles Introduction of a c tax Analysis Target	lean yable arbon Selection NGFS • Current Policik	Increase in renewable energy in the composition of power generation facilities in each country Fluctuation in electricity prices Fluctuation in the prices of fuel used for power generation Various other factors GDP growth rate Population fluctuations, etc. Scenario IEA World Energy Outlook SDS stands for Sustein STEPS stands for Sustein FAO Food and agriculture FAO Food and FAO FAO FOOD AGRICULTURE FAO FOOD AGRICULTURE FAO FOOD FOOD AGRICULTURE FAO FOOD FOOD FOOD FOOD FOOD FOOD FOOD F	Impact on Companies (Example) Renewable energy production overseas Overseas sales Costs, including carbon tax complementary Scenario 2021–505, STEPS tible Development Scenario 3 Policies Scenario projections to 2050–TSS, BAU Sustainability Scenario

Transiti Risk Scenario Analysis Overview

	Dynamic Approach (An approach reflecting new capital investments in response to market demand)	Static Approach (An approach reflecting the status quo without additional capital investment)
Current Policies (a scenario that assumes that only policies currently in place will be retained)	Current Policies × Dynamic	Current Policies × Static
Delayed Transition (Scenario in which annual GHG emissions do not decline by 2020, followed by strong emissions reduction policies)	Delayed Transition × Dynamic	Delayed Transition × Static
Net Zero 2050 (a scenario that limits global warming to 1.5°C through rigorous climate policy and technological irmovation, achieving net zero global CO, emissions in or around the year 2050)	Net Zero 2050 × Dynamic	Net Zero 2050 × Static

Six original scenarios are set up for each temperature range and approach to new capital investment

About the NGFS Scenario Used in Analysis

•Our transition risk scenario analysis adopts version 2 of the NGFS scenario published in 2021. Of the three NGFS models, we analyze scenarios using the values of the REMIND-MAgPIE model. These values were also used in the Pilot Scenario Analysis Exercise on Climate-Related Risks Based on Common Scenarios by the Financial Services Agency and the Bank of Japan, the results of which were published in August 2022.

Overview of NGFS Scenarios Analyzed

	NetZero 2050	Delayed Transition	Current Policies
Overview	Limits rise in global temperatures to 1.5°C through strict climate policies and technological innovation, reaching net zero CO ₂ emissions by 2050	Assumes annual CO2 emissions will not decrease until 2030, followed by strict policies	Assumes that only current policies will be retained
Rise in temperature (by 2100)	Less than 1.5°C	Approx. 1.8°C	Approx. 3°C

Domestic Disclosure Examples : The Norinchukin Bank (Financial, 2/5)

Quantitative disclosure of the results of each scenario for transition risk and physical risk, with detailed description of the analysis steps

Quantitative analysis by sector

✓ The impact of transition risk on the credit portfolio is described as limited

Transition Risk Scenario Analysis Results

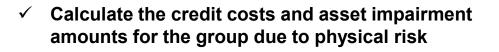
Electricity and Oil-Gas-Coal Sectors

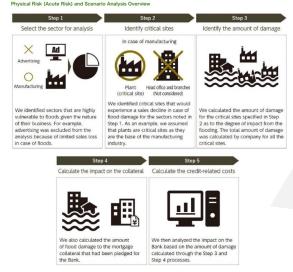
In every scenario, greater demand for renewable energy and stricter regulations on carbon emissions in various countries would result in stranded fossil fuels and reduced market demand. Business whose profits depend on fossil fuel prices will likely see declining performance. On the other hand, companies that view renewable energy as a climate change opportunity tend to increase revenues through capital investment.

Food and Agriculture and Beverages Sectors

In every scenario, the global demand for food will increase due to global population growth and other factors. This demand will lead to increased production and increased profits for companies engaged in global business activities. On the other hand, companies whose operations are limited to a specific region may see revenues increase or decrease depending on the characteristics of the region (changes in food culture, population increase or decrease, etc.), and the results of the analysis are mixed.

Chemicals Sector


Results varied depending on the chemical products manufactured and the region in which the company operates. The Delayed Transition Scenario toward decarbonization and the Net Zero 2050 scenario resulted in slower economic growth. These scenarios revealed relatively lower demand for each chemical product compared to the Current Policies Scenario, with the exception of certain products. On the other hand, demand for hydrogen and ammonia as fuels that do not emit CO2 directly is likely to increase. Demand for functional chemical products used as battery materials is also likely to increase with the wider adoption of electric vehicles; however, price shifts to products should be limited in nature.


Impact on Credit Portfolio

The total impact of transition risk in the three aforementioned sectors could increase the cost of credit by between 3 billion yen to 22 billion yen per year through the year 2050 (the range is the difference between the Dynamic and Static approaches). The impact on our credit portfolio would be limited.

Physical Risk (Acute Risk) Analysis Overview

Subject of Analysis(1) Key domestic and overseas locations of borrowers expected to be affected by flooding
(2) Real estate collateral pledged to the Bank
(3) Assets at the Bank Group domestic and overseas locations (buildings and fixtures)Not Subjected to
AnalysisIndustries where flood damage is not expected (e.g., advertising, publishing, finance, etc.)Analysis ScenarioIPCC RCP2.6 and RCP8.5Measurement ResultsCumulative additional losses of approximately ¥23 billion through the year 2100 (credit costs plus damage to
Bank Group assets)

Detailed description of analysis steps

- STEP1: Narrow down the industries
- STEP2: Identify critical business sites
- STEP3: Identify the amount of damages
- STEP4: Calculate impact on collateral
- STEP5: Calculate credit-related expenses

Source : The Norinchukin Bank, SUSTAINABILITY REPORT 2024, https://www.nochubank.or.jp/en/sustainability/pdf/2024/all_en.pdf (As of January 2025)

Domestic Disclosure Examples : The Norinchukin Bank (Financial, 3/5)

Quantitative analysis of the impact of physical risks on the income of rice, milk, and beef cattle producers in the agricultural sector, separately indicated for cases where measures were taken into deal with rising temperatures and cases where no measures were taken

Conducted a scenario analysis of chronic risks to the agricultural sector that may have an impact on \checkmark business continuity. Quantitative analysis of the impact on producers' income, despite the lack of analytical methodology, insufficient data, and model complexity

Physical Risk (Chronic Risk) Analysis

The Norinchukin Bank is committed to achieving Net Zero by 2050 across our investees and borrowers. In conjunction, we pursue an increase in the income of farmers, fishermen and foresters as a 2030 medium- to long-term goal in support of sustainable agriculture, fishery and forestry industries and local communities. Given that the agriculture, fishery and forestry industries are vulnerable to the effects of climate change, we endeavor to analyze the impact of climate change on the incomes of participants in these industries.

For chronic risk, we selected agriculture and fisheries as sectors to analyze. These industries are important to the Bank, which serves the agriculture, fishery and forestry industries. We chose rice cultivation, livestock production (raw milk and beef cattle), and ocean fisheries (bonito) as target commodities to analyze. Our analyses addressed the impact of climate change, including increases in air and ocean surface temperatures, on producer and fisher income, as well as adaptive measures.

This analysis estimated the change in revenue as of the end of the 21st century compared to the end of the 20th century in two scenarios; (1) one in which no measures are taken to adapt to rising temperatures and (2) one in which measures are taken to adapt to rising temperatures. We adopted the IPCC RCP 2.6 and RCP 8.5 scenarios ("2°C increase" and "4°C increase," respectively) for analysis, conducting a total of four analyses.

Step 1	Step 2	Step 3
Estimate the impacton production volume	Estimate the impact on prices	Provisionally estimate the impact on revenue
We analyzed the change in production volume due to climate change. We considered the impact of climate change, for example, higher air temperatures and the precipitation variations regarding rice cultivation.	We estimated the impact on product prices due to variability in quality or other factors caused by climate change.	We analyzed the impact on revenue for producers considering the analysis in Steps 1 and 2.

Analysis method: Rate of change in production volume + Rate of change in product prices = Rate of change in revenue

The following provides a summary of the results of chronic risk analysis for the agricultural sector. The results indicate a decline in income due to the effects of climate change. However, it may be possible to achieve flat income levels through adaptive measures.

	Scenario	Production Volumes	Price	Income Without Adaptive Measures	Income Introduction of Adaptative Measures
Rice Crop	4°C rise	-6.4%	+1.4%	-5.0%	+3.5%
Kice Crop	2°C rise	+3.3%	-1.6%	+1.7%	-
Raw Milk	4°C rise	-1.1%	+0.9%	-0.1%	±0.0%
Naw Willik	2°C rise	-0.2%	+0.2%	±0.0%	-
Beef Cattle	4°C rise	-1.2%	+0.6%	-0.6%	±0.0%
Deel Cattle	2°C rise	-0.3%	+0.2%	-0.2%	-

The following provides a summary of the results of chronic risk analysis for the fisheries sector. The results indicate regional variances in income due to the effects of climate change. However, it may be possible to limit income declines through adaptive measures

	Scenario	Production Volumes	Price	Income Without Adaptive Measures	Income Introduction of Adaptative Measures
Ocean fishing	4°C rise	-9.2% ~+4.7%		-8.0% ~+4.0%	-7.6% ~+4.0%
(bonito)	2°C rise	-9.2% ~+9.5%		-8.0% ~+8.1%	-6.1% ~+4.0%

Our analysis includes several assumptions and hypotheses due to the many limitations in scenario analysis models for the agriculture and fisheries sectors. These limitations include 1) a lack of available methodologies established globally. 2) incomplete data, and 3) ied and complicated impact channels. Note that impacts may differ from the actual impact on agricul management, as our analysis targets revenue, not income (i.e., the amount after deducting expenses, etc., from revenue

These limitations include

- available methodologies established globally 1)
- **Incomplete data** 2)
- 3) **Diversified and complicated impact channels**

Domestic Disclosure Examples : The Norinchukin Bank (Financial, 4/5)

For transition risk, the company plans on upgrading scenario analysis through expansion of target sectors and additional analysis of 1.5°C scenarios. Publishing future projections for investments and loans considering climate change risks

✓ Assuming the impact of transition risk and carbon neutrality in 2050, upgrading of scenario analysis is underway through expansion of target sectors and analysis using the 1.5°C scenario

Methodology for Transition Risk Scenario Analysis

Targets and sectors analyzed

Based on the results of our qualitative assessment of climate change-related risks, we selected the electricity, oil-gas-coal, food and agriculture, and beverage sectors as targets for transition risk scenario analysis. The electricity and oil-gas-coal sectors have been identified in the final TCFD report and SASB as sectors having high carbon emissions and highly vulnerable to transition risks. Our selection was based on initiatives consistent with these global views. We selected the food and agriculture and beverages sectors based on the results of our climate change qualitative assessment, as well as the fact that these two sectors form the foundation of the Bank. Given our investment and loan portfolio, the analysis covers not only domestic and overseas borrowers, but also our investees in corporate bonds.

Analysis scenario data

We use three scenarios published by the NGFS. Specifically, we adopted three future scenarios for our analysis. We used the *Current Policies* scenario, which assumes that only the policies currently in place are maintained, and the assumption that annual greenhouse gas (GHG) emissions will not decrease by the year 2030. We then used the *Delayed Transition* scenario, in which strong policies are implemented to limit global warming to 1.5°C through rigorous climate policy and technological innovation. And last, we used the *Net Zero 2050* scenario, which assumes net zero global CO₂ emissions will be achieved in or around the year 2050. We predicted the impact on the Bank's investees and borrowers , while also analyzing the increase or decrease in credit costs. We formed our predictions by combining the Dynamic approach, in which companies make new capital investments in response to climate change, and the Static approach, in which companies do not make additional capital investments in response to climate change.

- In connection with the NGFS scenario for which we lacked sufficient data, our analysis of the electricity and oilgas- coal sectors incorporated various forecast data from the IEA World Energy Outlook 2021, which is widely used both in Japan and internationally. Data was taken from the Sustainable Development Scenario (SDS), which is a set of measures consistent with achieving the 2°C target of the Paris Agreement, the Stated Policies Scenario (STEPS), which incorporates currently announced policies and targets, and the *Net Zero Emissions by 2050 Scenario*.
- In connection with insufficient data for the analysis of the chemical sector, we referred in part to the IEA's Energy Technology Perspectives 2022 and the STEPS and SDS scenario data contained in the IEA's Ammonia Technology Roadmap October 2021.
- •For the food and agriculture and beverage sectors, we used as complementary data various FAO forecast data, Toward Sustainability Systems (TSS) Scenario in which where positive change is required to establish sustainable food and agriculture systems, and Business As Usual (BAU) Scenario, in which past trends and policy directions are maintained as the status quo.

Efforts to increase the sophistication of scenario analysis models

- •We began disclosing the results of our scenario analysis with our Sustainability Report 2021. We also strive to improve the sophistication of our models to utilize analysis results to better explanation of our position and conducting engagement (constructive dialogue).
- •As an example, we made improvements by replacing parameters (variables) in the analysis model to make the analysis results more precise and consistent with real-world perspectives. We will continue to refine the results of our analysis by upgrading our models as necessary.

Climate Change-Related Risk Assessment by Sector

The impact of climate change will become even more apparent over the medium- to long-term, and will vary depending on the sector in which our investees and borrowers operate. Therefore, we evaluated where and when transition and physical risks would occur in the targeting sectors and other areas defined by the TCFD recommendations.

The occurrence of risks associated with climate change is caused by various external factors, environments, and spillover channels. We created the table below after identifying these risks and factors. The table shows (in chronological order) the impact of these risks on the sectors in which the Bank has most financial exposure. Our analysis also reflects the effects of climate change occurring at different times according to region, geographic conditions, and legal regulations. As one example, transition risks in the EU are expected to occur early due to environmental regulations being adopted ahead of the rest of the world.

		2030			2040			2050	
Sector									
	Japan	EU	US	Japan		US	Japan	EU	US
Electric utilities									
Oil-gas-coal									
Chemical									
Metal and mining									
Food and agriculture									
Beverages				(III					
Railroad									
Land transport									
Marine transport									

which global warming advances.

Physical Risk Assessment¹

Domestic Disclosure Examples : The Norinchukin Bank (Financial, 5/5)

As for expanding opportunities, the company sets mid to long-term target of 10 trillion yen in new sustainable finance in 2030. Aiming to integrate business strategies with environmental and social responses, including climate change

Based on the impact of climate change on the agriculture, forestry, and fisheries industries, such as stranded assets in the portfolio and wind and flood damage, the plan describes investment and financing plans that lead to the development of the agriculture, forestry, and fisheries industries from an environmental and social perspective, on the premise of securing earnings through the acquisition of business opportunities.

The Norinchukin Bank Sustainable Finance

As a member of a cooperative organization supporting agriculture, fishery and forestry industries, the Norinchukin Bank understands that our businesses are part of the life, natural environment, and the affluent lives of community members sustained through these industries. As such, we aim to resolve environmental and social issues through sustainable finance. We set a target ¥10 trillion in new finance between fiscal 2021 to 2030.

Our sustainable finance refers to the following:

Investment and finance with ESG-related third-party certification
Investment and finance that integrate ESG/SDGs factors into
investment strategy and decision-making
Investment and finance for environmental and social businesses
Procuring sustainability related financing

Sustainable finance includes loans originated through our group company the Norinchukin Trust & Banking Co., Ltd., external management contracts of ESG funds managed by Norinchukin Zenkyoren Asset Management Co., Ltd., as well as investment and finance through Norinchukin Australia Pty Limited and Norinchukin Bank Europe N.V.

estment and finance total

een bonds and green deposits

Procuremen

Investment and Finance for the Resolution of Environmental and	
Social Issues	

Investing in European Investment Bank Sustainability Awareness Bonds

The Bank invested a total of A\$300 million in sustainable awareness bonds (the "Bonds") issued by the European Investment Bank. We plan to use these Bonds, which focus on natural disasters and risk management, for global activities and projects that help create a sustainable environment and society. The importance of measures for climate change natural disaster adaptation increases each day as climate change has caused increasingly severe natural disasters around the world in recent years. The Bank is committed to investing in bonds to contribute to safe and sustainable urban development, providing funds for infrastructure development and contributing to natural disaster risk management.

> Resolving Social Issues Through Finance

Worldwide Action in Project Finance

In our investment business, we are fully engaged in project finance. Unlike corporate finance, which provides leans according to the creditworthiness of the corporation receiving the lean, project finance targets a specific business/project and then evaluates its profitability before financing.

Project Finance Case Studies

Environmental Secto

Loan balance: ¥1,120 billion

The Bank provides financial support for renewable energy projects such as offshore wind and submarine transmission lines in the UK and continental Europe, as well as solar power generation in the Middle East and Japan.

Social Sector

Loan balance: ¥1,266.4 billion

The Bank provides financial support for water treatment projects in Australia and the Middle East, as well as other social infrastructure projects such as schools, hospitals, and other public facilities in Australia, the UK, and the Middle East.

Source : The Norinchukin Bank, SUSTAINABILITY REPORT 2024, https://www.nochubank.or.jp/en/sustainability/pdf/2024/all_en.pdf (As of January 2025)

Approx. ¥6.7 trillie

Approx. ¥0.3 trillion

Domestic Disclosure Examples : Mizuho Financial Group (Financial, 1/3)

Worldview is quantitatively described for each sector and scenario

Specify the referenced external scenario and describe the worldview based on the reference scenario quantitatively and qualitatively for each business to be analyzed

(4) Scenario analyses

Mizuho conducts scenario analyses for both transition risks and physical risks in order to understand the future impact of climate change on our Group's portfolio. The analyses use four NGFS scenarios, including the 1.5°C scenario, to increase the flexibility of plans and the resilience of strategies in anticipation of various future climate change-related outcomes.

Calcular putting Centers are meany zero Notes intoin the outset Receipt intoin 2000 million Outset Business structural transformations Almost none expected Progress from the outset Progress made from 2030 on Rapid progress from the outset Transition risks Low Image: Compared to the outset Image: Compared to the outset High Opportunities Low Image: Compared to the outset Image: Compared to the outset High The impact of physical risks will be substantial, as the substantial, as the substantial, as the substantial, as the substantial, as the substantial, as the substantial as the substantial as the substantial as the substantial as the substantial as the substantial as the substantial as the substantial as the substant	S	cenario	Current Policies	Below 2°C	Delayed Transition	Net Zero 2050
Increase by 2100 +1.3°C +1.3°C +1.3°C GHG emissions Net zero not achieved even in 2100 Net zero not achieved even in 2000			assumes that current policies are	that climate-related policies gradually become more stringent and the rise in the average global temperature is limited to below 2°C. Policy responses proceed quickly and smoothly, but technological innovation is	that annual emissions do not decline until 2030 and very tough policy responses are needed to keep the temperature increase below 2°C. Rapid progress is made in developing more stringent policy responses and in	CO ₂ emissions reach net zero around 2050 due to smooth and quick policy responses and rapid
Main ssumption Carbon pricing Levels are nearly zero Rises from the outset Rises from 2030 on outset Rises from the outset Business structural transformations Almost none expected Progress from the outset Progress made from 2030 on on Rapid progress from the outset Transition risks Low Progress from the outset Progress made from 2030 on Rapid progress from the outset Opportunities Low Progress from the outset Progress made from 2030 on Rapid progress from the outset Opportunities Low Image of physical risks will be severily of disasters fracting associated demand for financing from relatively to be because functure and technology and decarbonization relatively to be because functure for extransformations are preletiones. The weak of the impact of fractional for extransformations are relatively to be because functure for extransformation are preletiones. The weak of the mage of formation for extransformation are preletiones. The weak of the impact of fracture for extransformation are antipop of the impact of transformation are preletiones. The weak of the impact of fracture for extransformation for extransformation are antipop of the impact of transformation are for extransformation are antipop of the impact of transformation for extransformation for extransformation are antipop of the impact of transformation for extransformation are antipop of the impact of transformation for extransformation for extransformation are antipop of the impact of transformation for extransformation the impact of transition fractanon transformation for			+3.0°C	+1.8°C	+1.8°C	+1.5°C
Summations Carbon pricing Levels are nearly zero Rises from the outset Rises from 2030 on on Rises from the outset Business Busines Business Business Busines Business Business Busines		GHG emissions				Net zero achieved by the 2050s
structural transition risks Low Progress from the outset Progress from the outset Rapid progress from the outset Rapid progress from the outset Rapid progress from the outset Transition risks Low Image: Comportant State High Image: Comportant State High Image: Comportant State High Image: Comportant State High Image: Comportant State Image: Comportant State High Image: Comportant State Image: Comportant State High Image: Comportant State Image: Comportant State Image: Comportant State High Image: Comportant State Image: Comportant State </td <td></td> <td>Carbon pricing</td> <td>Levels are nearly zero</td> <td>Rises from the outset</td> <td>Rises from 2030 on</td> <td></td>		Carbon pricing	Levels are nearly zero	Rises from the outset	Rises from 2030 on	
Physical risks will be Low High Copportunities Low High Comportantities Low High Comportantities Low High Compared to the other severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks will be severity of disasters increases all rough the impact of physical risks all be almost no business almost no business almost no business almost no business almost no fusions increases almost no fusions are expected, associated the of financing increases to below 1.8°C.		structural	Almost none expected	Progress from the outset		
Opportunities Low High medications for Mouldo The impact of physical risks will be serverity of disasters increases. Although impact of transition risks will be summary Although the impact of transition risks will be serverity of disasters increases. Although transition risks will be summary Although the impact of transition risks will be serverity of disasters increases. Although transition risks will be summary Although the impact of transition risks will be summary Although the impact of transition risks will be summary Compared to the other scheme in the transition risks will be invoiced to transition decarbonization the because clients use their own funds. Compared to the other scheme in the transition risks will be summary Summary Summary Although the impact of transition risks will be summary to the transition decarbonization transition risks will be summary to the transition risks will be summary to the transition the transition risks will be entitled by use to the transition the transition risks will be relatively to be because clients use their own funds. Although the impact of transition risks will be summary to the transition decarbonization measures to keep temperature increases to below 1.8°C. Compared to the other scheme transition the transition the transition risks will be summary to the decarbonization measures to keep temperature to the transition the transition risks will be summary to the transition the transite transition the transition risks will be summary to th		Transition risks	Low 🔵	•••••	·····>	High
The impact of physical risks will be substantial, as the severity of disaster increases to because from discussion risks will be financing associated with business performance to a decarbonization measures may be allowed for next-generation structural transformations are expected, associated with out and for financing by client will be clients will be the impact of transition risks will be financing associated with business performance to decarbonization measures may be allowed for next-generation teating transformations are expected, associated with out of the other increases to below 1.8°C.		Physical risks	High 🔵			Low
Summary Summar		Opportunities	Low		·····>	High
	Implications for Mizuho	Summary	physical risks will be substantial, as the severity of disasters increases along with rapid temperature increases. Although the impact of transition risks will be imited, because almost no business structural transformations are expected, associated demand for financing	transition risks will be limited, demand for financing associated with next-generation technology and decarbonization measures may be relatively low because clients use their own	risk management, because the impact of transition risks may cause client business performance to deteriorate. There will be demand for financing from clients from 2030 onward for next-generation technology and decarbonization measures to keep temperature	scenarios, the impact of physical risks will be imited, but attention must be given to risk management, because the impact of transition risks may cause client business performance to deteriorate. Demand for financing from clients will increase from current lechnology and decarbonization measures to keep temperature increases to
		(450/1-002)	Carbon prices	(ML002/yr)	HG emissions	
Carbon prices GHG emissions		400		40,000		
(0801-010) 500 50,000 50,000		100		30,000		

a. Outlook for the electric power sector

define range of scenarios

Source: Prepared by the Mizuho Financial Group with reference to the IEA World Energy Outlook 2023, the Ministry of Economy, Trade and Industry's Transition Finance Roadmap (Power Sector), the Basic Policy for the Realization of GX, and other publicly available materials

Expressing quantitative and qualitative description of the worldview under the reference scenario for each target project(Besides electricity, it spans a wide range of industries such as coal, steel, and others)

Source: NGFS Scenarios (Phase III) (all figures on a global basis)

Source : Mizuho Financial Group, Climate & Nature-related Report 2024,

https://www.mizuhogroup.com/binaries/content/assets/pdf/mizuhoglobal/sustainability/overview/report/climate_nature_report_2024.pdf (As of January 2025)

scenarios and provide

an overview of each

scenario

When assessing business impact, credit costs are quantitatively analyzed for each scenario as well as resilience to climate change is expressed as "financial impact is limited"

- Quantitatively describes the financial impact of risks and shows trial calculation results of credit costs by scenarios
- ✓ By stating that the financial impact is limited, it also states the company is resilient to risks

ii. Transition risk scenario analyses

The scenario analyses for transition risks are used to evaluate the impact on client businesses caused by regulatory, technological, market, and other changes and to analyze the increase in credit costs. The automotive (suppliers), cement, and chemical sectors were added this time to the sectors subject to analysis.

Table 7 Over	view of transition risk analyses (changes from previous report are underlined)
Reported value	Cumulative increase in credit costs through 2050 caused by the impact of transition risks
Scenarios	NGFS Current Policies, Below 2°C, Delayed Transition, and Net Zero 2050 scenarios
Targeted regions	Japan and overseas
Targeted sectors	Electric utilities, oil and gas, coal, steel, automotive (OEM and <u>suppliers</u>), maritime transportation, aviation, <u>cement</u> , and <u>chemical</u> sectors
Analysis scope	Total of loans, foreign exchange, acceptances and guarantees, commitment lines, etc. (as of March 31, 2024)
Analysis details	Credit costs associated with deteriorating client business performance

a. Analysis process

- The analysis used parameters from the NG+S scenarios (Phase III) and for parameters not accounted for in the NGFS scenarios, we referred to IEA and other references and supplemented the parameters with conservative assumptions.
- Please refer to Appendix p. 105 108 for sector-specific risks and opportunities, an overview of the analysis and a synopsis of the scenarios.
- Exposure as of March 31, 2024 is assumed to remain constant through 2050

b. Scenario analysis results Figure 24 Changes in cumulative credit cost increases by scenario Cumulative increase in credit cost through 2050 Scenario (difference from the Current Policies scenario) Net Zero 2050 Approx. JPY 1,910.0 billion Delayed transition Approx. JPY 1,330.0 billion 2030 2040 2050 Below 2°C Approx. JPY 530.0 billion Current Policies Below 2°C Delayed transition —Net Zero 2050

While Mizuho may experience some financial impact over the medium to long term, any impact on its shortterm financial soundness is limited.

Credit costs increase sharply from the outset in the Net Zero 2050 scenario, and after 2030 in the Delayed Transition scenario. A breakdown by sector shows that the main contributors to the increase in credit costs are the steel and oil and gas sectors. According to the NGFS and other parameters, these sectors increase credit costs because of the considerable investments required for their business structural transformations and because of their large carbon costs, as GHG emissions, will still be present even in 2050. In all sectors, not just the steel and oil and gas sectors, credit costs may increase significantly in the phase when carbon prices shoot up while client measures to reduce GHG emissions are not fully implemented. From this, we confirmed the importance of promoting business structural transformations as early as possible, prior to the materialization of medium and long term risks, through in-depth engagement with clients.

In both the Below 2°C scenario, which assumes a quick and smooth response to climate change (an orderly transition), and the Delayed Transition scenario, which assumes an initial delayed response to climate change and a rapid transition from 2030 onward (a disorderly transition), the global average temperature increase is kept below 2°C. However, the credit costs are much smaller in the Below 2°C scenario, which confirms the importance of making an orderly transition.

Source : Mizuho Financial Group, *Climate & Nature-related Report 2024*, https://www.mizuhogroup.com/binaries/content/assets/pdf/mizuhoglobal/sustainability/overview/report/climate_nature_report_2024.pdf (As of January 2025)

	STEP4. Evaluate business	STEP5. Identify
define range of scenarios	impacts	potential responses

Domestic Disclosure Examples : Mizuho Financial Group (Financial, 3/3)

Demonstrates increasing resilience to climate change by providing solutions tailored to engagement and customer segments

Clarifies that Mizuho intends to increase resilience of both its business partners and Mizuho themselves by tightening engagement and providing solutions

iii. Client progress on transition risk responses

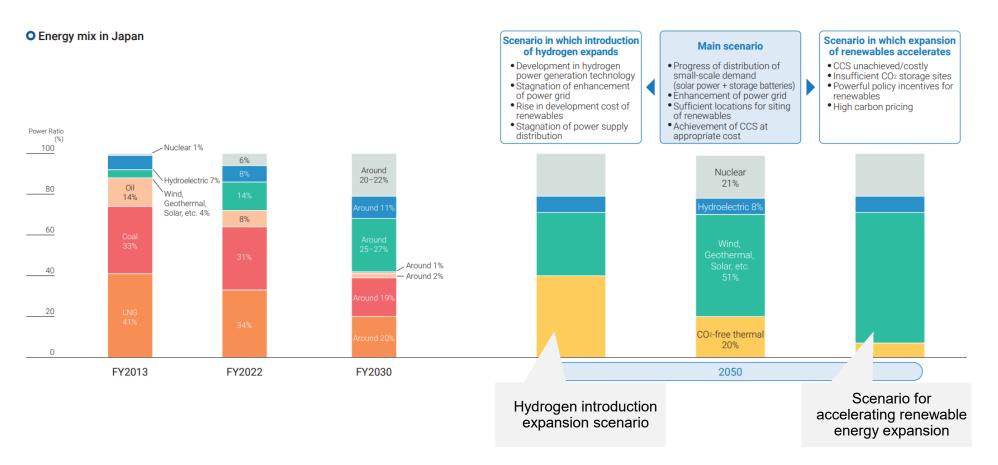
Mizuho confirms the status of client transition risk responses through engagement and supports transition responses in a phased manner. We saw steady progress by clients in all sectors on responding to transition risks compared to the previous year (Figure 41).

We will continue to practice engagement and provide financial and non-financial solutions to facilitate our clients' progress on decarbonization initiatives and on responding to transition risks. In this way, we will improve climate change resilience for both Mizuho and our clients. We will also continue to monitor the status of clients' transition risk responses after enhancing the evaluation criteria as described on <u>p.66</u>.

Low	Pro	gress in the client's (categorized based				risks	High
(1 ∙Has no polic transitio ∙Has set r	ý to address m risks no targets	(2) ∙Has a strategy to ad transition risks ∙Has set quantitative t		(3) s set targets aligne Paris Agreeme plementing specifie based on those ta	ent c initiatives	 (4) Has a third-part confirm that the track to achiev Certain to achiev 	y verfication to company is on e its targets
Based on the	number of co	mpanies					
Electric	Mar-21 2%	43%			51%	4%	137
Power	Mar-22 1%	31%		61%		8%	144
(coal, oil, gas, thermal energy	Mar-230%	23%		67%		10%	136
generation)	Mar-240%	17%		72%		12%	139
	Mar-21	13%	51%			36% 0	% 381
Resources	Mar-22 1%	53%			45%	19	
(coal mining / oil and gas)	Mar-230%	41%			58%	19	6 389
, on and gao,	Mar-240%	37%		6	62%	19	6 362
	Mar-22 2%	42%			56%	0	% 190
Steel	Mar-230%	29%		71%	6	0	% 117
	Mar-240%10)%		90%		0	% 51
	Mar-220%	36%		44%		19%	36
Cement	Mar-230%	14%	53%			33%	36
	Mar-240%6%	6	63%			31%	32

Figure 41 Client progress on transition risk responses*

Source : Mizuho Financial Group, Climate & Nature-related Report 2024,


https://www.mizuhogroup.com/binaries/content/assets/pdf/mizuhoglobal/sustainability/overview/report/climate_nature_report_2024.pdf (As of January 2025)

Domestic Disclosure Examples : J-POWER (Energy, 1/2)

Conducted scenario analysis for 2030 and 2050, including Japanese government's NDC (National Reduction Target) for 2030, and a 1.5°C scenario for 2050

STEP3. Identify and define range of scenarios

- In the 2050 scenario analysis, selecting the APS scenario as the main scenario as well as referring to Japan's 2050 power mix in the APS scenario
- Considering large impact on the group, the group created its own scenarios for cases when assumptions of renewable energy and thermal power generation are varied, and applied them in the analysis

Appendix 1-15

Domestic Disclosure Examples : J-POWER (Energy, 2/2)

In the 2030 scenario analysis, financial impact on thermal power and renewable energy businesses is calculated and quantitatively disclosed

Estimating financial impact on thermal power and renewable energy businesses in 2030 scenario analysis

Strategy: 2030 Scenario Analysis-Estimated Financial Impact-

As a result of several steps—the implementation of carbon pricing, support for the development and introduction of CO₂ emission reduction measures, and more—to reach carbon neutrality in 2050, it is anticipated that Japan's energy costs would rise in the future. Although the estimated financial impact contains information that will result in higher expenses, the J-POWER Group will work to control rising energy bills using methods that are economically sound.

O Financial impact in 2030: According to our reduction target (46% reduction; reduction of 22.5 million tons) (1/2)

	Factors	Calculation details	Impact in value				
	Phase-out of inefficient coal-fired thermal power plants	 An estimated 10 billion yen decrease in ordinary profit mainly due to the closure of inefficient coal-fired thermal power plants In cases where such coal-fired plants are maintained as standby power sources, no additional impact was assumed based on the assumption that institutional support will be provided. 					
	Carbon pricing (CP)	 Calculated assuming a carbon price of \$40/t in 2030, based on our internal carbon pricing (ICP) standard scenario; Increase in costs of approx. 150 billion yen Predicting the precise impact is challenging due to the expected rise in non-fossil value and associated revenue from CO₂-free power sources and the potential for part of the cost to be passed on to power charges Impact on carbon pricing will be regularly reconsidered paying close attention to Japan's energy policies to achieve green transformation (Exchange rate: 1USS=142 yen) Impact on CP CP (340+CD.) 	-				
Thermal power	Biomass/ammonia mixed combustion	When reducing CO ₂ emissions, the application of decarbonization options is deemed beneficial if the following formula holds. Reduction measures to be applied to CO ₂ emissions around 3 million tons: CO ₂ reduction cost is assumed at 12–54 billion yen. Reduce impact using policy support, etc. Work to make the CO ₂ reduction cost to be lower than the CO ₂ cost. CO ₂ price CO ₂ reduction cost					
		Biomass/ ammonia mixed combustion 2030 CP (ven/tC0.) * Cos reduction achieved by using carbon-neutral fuel * Cos reduction volume (kW) using carbon-neutral fuel * Cos reduction volume (kW) using carbon-neutral fuel * Cos reduction volume (kW) using fuel (ven/kWh) fuel (ven/kWh) For example of the second seco	-				
	Introduction of CCS	Introduction of CP In 2030 (yen/CO:) Separation and capture expenses (yen/CO:) + Storage expenses (yen/CO:) = Policy support					
	GENESIS Matsushima Plan	 By adding gasification facilities and other equipment to the existing Matsushima Thermal Power Plant and "upcycling" it, we aim to reduce CO: emissions by 10% as soon as possible while contributing to a stable supply. We will pursue CO-irree hydrogen power generation in the future. Use the Long-Term Decarbonization Power Source Auction to recoup capital expenditures and other fixed costs. 	0				
	Reduction in coal-fired thermal power repair expenses and renewal investment	 Constraining repair expenses and renewal investment for coal-fired thermal power plants prior to reduction of operations anticipated from 2030. Actual repair costs for, as well as investments to replace, coal-fired thermal power will require about 45 billion yen per year, while investment for renewal will require about 20 billion yen per year. We will work to reduce some of these expenses. 	+α				
	Factors	Calculation details	Impact in value				
CO2-free power	New development of renewable energies	Estimated from the power generation value from new development of renewable energy and non-fossil value Power generation volume of renewable energies +4.0 billion kWh FY2022 FY2030	Profit increase of 10 billion yen and above				
sources	Expansion of revenues for existing renewable energy	Enhance the non-fossil value of existing renewables (10 billion KWh)					
	Ohma Nuclear Power Station (under construction)	The impact of the project has not been included in the financial impact estimation as it is currently under review based on the new regulator criteria.	-				

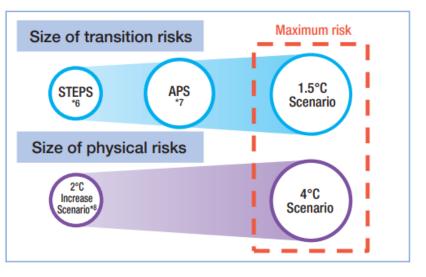
 For the impact on thermal power, estimates a decrease in profit of approximately 10 billion yen due to a decrease in sales volume

 Listing prerequisites based on the assumed worldview.

 Carbon price: 700~3,000 yen/tCO2

Quantitative description of the financial impact of each risk/opportunity

		business environm			Group risks and opportun		Timeline		Major impact
		icts on our busines		(🛑 : Ris	ks 🛑 : See p. 66 for fina of opportunities)	incial impact	Medium term	(Long term)	on business*1
	(Act on GX Pro Energy Use, Ac	HG emission regulations motion, Act on Rationalizing t on Sophisticated Methods aly Structures, etc.)	Transition risks (Policy)	 Lost revenue from a generation using fos 	ine with tightened regulations 1 decrease in market competitiveness and sil fuels les due to increasing customer withdraw		0	0	0
					t hydro, solar, and wind power 🧿		0	0	0
	✓ Increasing needs for non-fossil energy sources			 Use of nuclear power Examination and utility 	r with safety as top priority 234	(9) alogies	0	0	0
 ✓ Increasing needs for h decarbonized thermal ✓ Greater Investment in technologies 		hermal power generation	Opportunities (Energy sources)	 Utilization of carbon- IGFC+CCUS/Carbon 		power generation,	0	0	0
					ional business (renewable energy projec		0	0	0
1.5°C Scenario	 Rapid adoption technological a 	of renewable energy due to idvancements	Transition risks (Technologies)	Increase in grid cour	fermeasure costs 10		0	0	0
	_		Transition risks (Technologies)		rilization of existing intellectual property in competitive/growth capabilities due to erty		0	0	
			Transition risks (Reputation/ market)	 Potential impact on r are deemed insuffici 	narket share and fund procurement if ou ent and our reputation for reliability and	r decarbonization initiatives corporate image suffers 5	0	0	0
	 Increasing neer energy-saving 	needs among customers for ving and decarbonization in their business activities Opportunities (Market)		Promotion of electrification, DR ⁺² and Solar PPA, ⁺³ etc. 6			0	0	0
				Development of carbon recycling technologies (CO ₂ -TriCOM, Gas-to-Lipids) ^{*4}			0	0	
	(cloudbursts, t)		Physical risks (Acute)	Increase in costs due	and countermeasure costs in line with fa to enhanced resilience measures (facili , creation of coordinated systems to ens	ty countermeasures to	0	0	0
4°C Scenario	✓ Changing rainf:	ali patterns	(and	Decreasing water flo	Decreasing water flow rates (Decreasing hydropower)		0	0	
	 Rising average levels 	temperatures and rising sea	Physical risks (Chronic)	Adverse impact on h	usiness activities			0	
		limate change-relate Group's climate-related risk			e previous page, are as below.			Bisk	s 📕 : Opportunities
Cost increase	GHG emissions are not reduced COs emissions from the startup of Shimane Unit 2*1 th		th 3 Co	st decreases in line with suced CO2 emissions from a startup of Shimane Unit 3*1	Benefits from fuel cost reductions in line with startup of Shimane Unit 2*2	5 Impact on interest expense the event interest rates flue by 0.1% ⁺²	ses in actuate	6 Increase electricit electricit due to a	In income from y rates in the event y sales increase by 1% n increase in
Approx, 108,0			n/year Approx	, 79,0 billion yen/year	Approx, 80.0 billion yen/year	Approx, 0,8 billion yen/	'year		ation rates ^{ra}),0 billion yen/year
Damage cost heavy rainfall 2018) Approx. 3.7 t	ts ⁻⁴ (Impact of the disaster in July billion yen/year	 Financial impact on raw materials due to discreas water flow rates** (figure FY2024) Approx. 0.5 billion y 1% water flow rate 	s from so (Pi en/	estments associated with the carbonization of energy urces 2025-FY2031 total)*5 ox. 700.0 billion yen	Investments associated with the decarbonization of the transmission and distribution business (FY2023-FY2031 total) (FY2023-FY2031 total) Approx. 600.0 billion yen	Lated with the future of the two states of the two states of the two states of the distribution 10 the NEE Exceeds and Advanced Econom the the NEE Exceeds and the two states of the two states distribution 12 calculated based on strayed will be the own part 3 calculated based on PS/2024 and streements. Wates total)		anomies (Net- ing the calcula ir past 10 yea lues are not di calculation. ial impact.	tero Commitments) section tions on \$140/t0Os. 9 sfinitive and fluctuate based


Climate change risks and opportunities

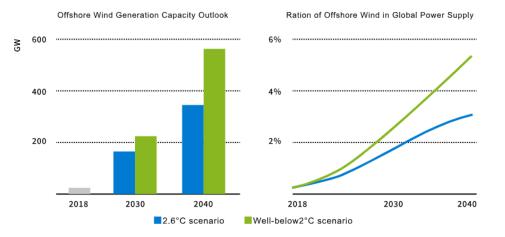
Emphasizes business resilience as being able to respond to either scenario

STEP4. Evaluate business impacts

By working on measures that assume the main scenarios will come to fruition, we will be able to respond to both scenarios and engage in business with our resilience assured.

We believe that transition risks and opportunities are one and the same.

Source : The Chugoku Electric Power, Integrated Report 2024, https://www.energia.co.jp/e/ir/report/pdf/integrated-01.pdf (As of January 2025)


STEP5. Identify

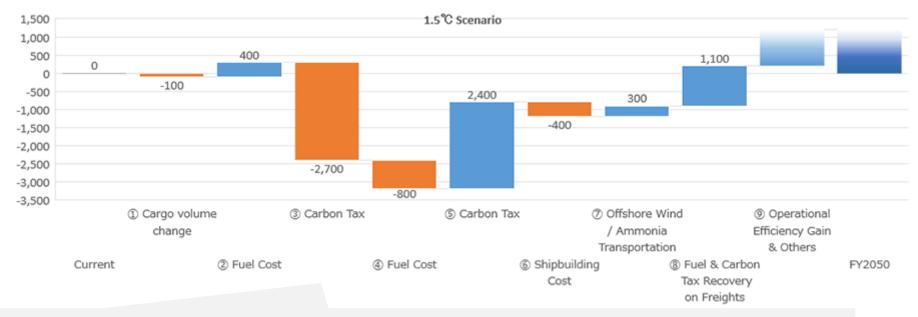
potential responses

Domestic Disclosure Examples : Mitsui O.S.K. Lines (Transportation, 1/4)

In line with the company's business model, they quantitatively discloses its worldview under multiple scenarios. Quantitative information is also used to estimate business impact

- Quantitatively and qualitatively describe the worldview under each scenario according to your company's business model
- ✓ Quantitative worldview is shown as a parameter in the calculation of business impact evaluation

⁽Source: IEA "Offshore Wind Outlook 2019")


We estimated based on the assumptions used in scenario analysis that by maintaining such comprehensive initiatives, the following profitopportunities can be expected in the offshore wind power-related business field as a whole (as of 2050).

(Billion yen)	2.6° C	Well-below 2° C	1.5° C
Offshore wind power-related business	9.0	17.0	24.0

Domestic Disclosure Examples : Mitsui O.S.K. Lines (Transportation, 2/4)

Setting multiple scenarios (1.5°C / 2°C or less / 2.6°C) . Quantitatively and narratively discloses business impact in 2050 by scenarios.

In the business impact evaluation, the following factors are thought to have an impact on the business: (1) changes in cargo volume change, (2) fuel costs, (3) carbon tax, (4) introduction of alternative fuel vessels, and (5) new business opportunities, and illustrate quantitative impact for each scenario in a waterfall charts

• Factors affecting profit/loss from now to 2050 (1.5°C scenario, unit: JPY 100 million, single-year basis)

Stating Quantitatively and narratively that the profit level in 2050 is resilient based on the risk of cost increases, cost reductions through risk mitigation measures, sales opportunities, etc

- Carbon tax will be a major factor in deteriorating profits (▲270 billion yen)
- Significantly reduce carbon tax by introducing next-generation fuel vessels (+240 billion yen)
- Expansion of new business opportunities in the clean energy business field (+30 billion yen)
- Efforts to pass on the cost increase due to carbon tax to prices (+110 billion yen)
- Take appropriate measures in the form of efficient operations and other new businesses

Domestic Disclosure Examples : Mitsui O.S.K. Lines (Transportation, 3/4)

Responding to climate change risks, the company changed their investment policy for the next three years, announcing new investment plans in addition to the environmental investments that have already been decided.

- Based on the scenario analysis results, investment policy was significantly changed as a climate change countermeasure
- A new environmental investment of 270 billion yen has been decided for 2023-2025, and a breakdown of the investment is also listed

🔄 (3) Investments related to climate change risks

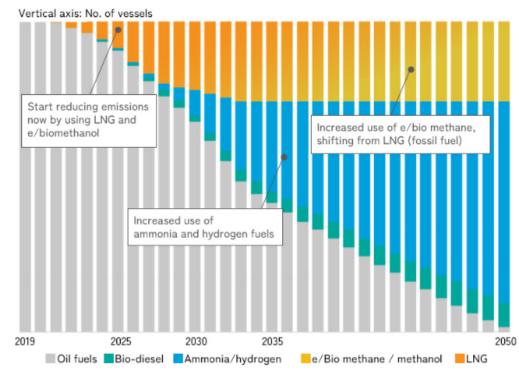
To address climate change risk, MOL plans to make investment of around 650 billion yen in the low-carbon and decarbonization field over the three years from 2023 to 2025 (with plans for 380 billion yen of new investment in addition to the 270 billion yen of investment already decided). For details, please refer to BLUE ACTION 2035 [2] (management plan).

The Group's major future capital investments will be made in line with its long-term GHG emission reduction target (to achieve net zero emissions by 2050). In addition, investments in carbon-intensive assets and products, such as fossil fuel-powered ships, will be phased out in favor of investments in clean energy and other decarbonized assets and products.

Increase payout ratio from 25% to 30% as well as set 150 yen of minimum guaranteed dividend. Cash-in Cash-out Consider additional shareholder returns subject to business environment Investment aligned with Investment Breakdown Environmental Strategy Leverage external funds while External Financii 460 billion yen controlling Net Gearing Ratio Market Driv ID'S GHG EI Continue asset replacement and Asset Replaceme cash generation 150 billion yer ف Veriodical revi Investment 1.2 trillion yen subject to the ACTION 2035 Stable Revenue Stable generation of **CF from Operating** 900 billion ye 250 billion yen of CF from Activities Operating Activities every year 780 billion yen

Announcing new investment policy of 270 billion yen as environmental investment

 Excerpt from "Environmental Strategy" page of BLUE ACTION 2035 (management plan) Investments in Phase 1 aligned with Environmental Strategy


 Positioning of environmental investment in BLUE ACTION 2035 (management plan) Financial Plan / Cash Allocation : Outlook in Phase1(FY2023-FY2025)

(Cash out basis)	-		
(billions of yen)	Already Decided	New	Subtotal
Reduction of our Group's GHG Emissions	190.0	160.0	350.0
Low/Decarbonization Energy Business	190.0	110.0	300.0
Total	380.0	270.0	650.0

The company illustrates five strategies and transition paths for specific GHG emissions reductions

✓ In addition to investment goals, the transition plan for achieving net zero in 2050 is also illustrated

MOL has established an interim target of a 45% reduction in GHG emission intensity from transport by 2035 and indicated a specific pathway for achieving net zero GHG emissions by 2050. We have established five specific actions for reducing GHG emissions, including the adoption of clean energy, enhancement of energy-saving technologies, and expanding decarbonization projects and have set a target of investing around 650 billion yen in the decarbonization field over the three years from 2023 to 2025 (reduction of our own GHG emissions: 350 billion yen; contribution to reduction of society's GHG emissions: 300 billion yen).

Composition of MOL's Ocean-Going Fleet by Fuel Type

The financial impact of population changes and river flooding on the transportation service business is estimated. The calculation basis is also clearly stated, quantitatively evaluated and disclosed

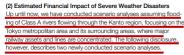
- Conducted scenario analysis using socio- \checkmark economic scenario (SSP) for transportation service business
- ✓ Disclosed quantitative analysis results regarding impact on passenger revenue

(2) Details of Scenario Analysis (Physical Risks)

In the Transportation business, future passenger volume is expected to decrease due to Japan's declining birthrate and aging population, and the impact is expected to be particularly significant in rural areas. In order to ascertain the financial impact of these factors and to verify the appropriateness of our business and environmental strategies, we conducted the following scenario analysis for fiscal 2051.

Scenario Analysis Methodology (Overview)

(1) Estimated Change in Future Passenger Revenue Trends + Based on Business Area Demographic Projections


(2) Estimated Financial Impact of = Financial Severe Weather Impact Disasters

(1) Estimated Change in Future Passenger Revenue Trends **Based on Business Area Demographic Projections**

We have estimated changes in passenger revenue up to fiscal 2051 based on data such as population and gross domestic product (GDP)*5 from the Japan Shared Socioeconomic Pathways (SSPs)*4, which are quantitative scenarios for future socio-economic conditions.

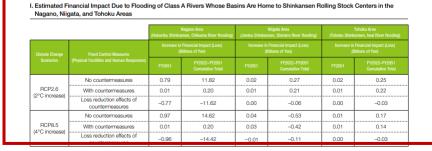
- *4 Japan Shared Socio-economic Pathways (SSP) population scenarios by city, ward, town, and village (2nd edition).
- *5 Population trend data is from Japan SSP's population estimates by city, ward, town, and village, National Institute for Environmental Studies and GDP data is from Global dataset of gridded population and GDP scenarios, International Institute for Applied Systems Analysis (IIASA's)

- Quantitatively evaluates the expected financial impact in the event of flooding due to planned scale rainfall for the rivers selected for evaluation
- \checkmark The calculation method is based on the asset value of major railway lines, planned suspension of service due to the disaster, loss of passenger revenue depending on the period required for restoration, and restoration costs for railway assets such as stations and tracks

I. Flooding Due to Overflowing of Class A Rivers Whose Drainage

Basins Are Home to Shinkansen Rolling Stock Centers in the Nagano, Niigata, and Tohoku Areas

The results of scenario analyses we have conducted to date show that the financial impact of more extreme weather disasters would be particularly heavy if Shinkansen trains parked in rolling stock centers were affected. Therefore, in terms of scenario analysis outside the Kanto region, we have chosen the potential flooding of rolling stock centers, due to the overflowing of the Class A rivers in whose drainage basins they are situated, in the Nagano (Hokuriku Shinkansen), Niigata (Joetsu Shinkansen), and Tohoku (Tohoku Shinkansen) areas. II. Kawasaki Thermal Power Plant Flooded by Storm Surge It is expected that rising sea levels due to climate change will increase the depth of flooding caused by storm surges. Therefore, in terms of facilities that could suffer heavy storm-surge damage, we have selected potential typhoon-driven storm surges (assuming both current conditions as well as elevated sea levels) affecting the Kawasaki Thermal Power Plant for scenario analysis.


The results of the quantitative evaluation performed using the above procedure are as follows.

STEP4. Evaluate business impacts

> Regarding I, in the Nagano area (flooding of the Chikuma River), the financial impacts of climate change in 2050 are greater under RCP8.5 (4°C increase) than under RCP2.6 (2°C increase), and the cumulative financial impact is expected to increase by approximately ¥14.6 billion from 2021 to 2050 (without inundation measures). We found that inundation measures yield a loss reduction effect of approximately ¥14.4 billion, and that vehicle evacuation and flood prevention mea sures at the Nagano Shinkansen Rolling Stock Center have a signifi cant loss reduction effect.

> Meanwhile, regarding the Niigata and Tohoku areas, as a result of studies conducted based on flood risk maps and projected amounts of rainfall, we found that the Shinkansen rolling stock centers are not expected to be affected by flooding. We therefore conducted quantitative assessments of scenarios that anticipate a certain degree of financial impact, including flooding of the Shinano River for the Niigata area and the Iwai River (a tributary of the Kitakami River) for the Tohoku area. We found that the financial impacts in these areas would be smaller than those in the Nagano area.

Based on the results of these assessments of the financial impact of climate change, we will continue to implement natural disaster countermeasures from both tangible and intangible perspectives in accordance with the degree of importance of facilities, mainly in flood prone areas that are susceptible to heavy impacts

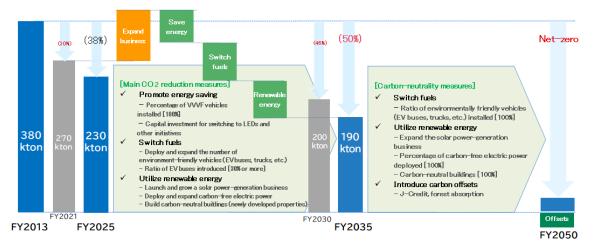
* "0.00" in this table indicates that the amount of the in ionificant (less than 0.005 billion

(3)

Domestic Disclosure Examples : Nishi-Nippon Railroad Co., Ltd. (Transportation)

As for transition plan, reduction targets and response measures are shown on the roadmap, indicating its linkage to the reduction target settings in the mid-term management plan

- Show the transition plan as a roadmap and separate measures that need to be taken to reduce CO2 and become carbon neutral.
- The target values of the roadmap are also reflected in the setting of reduction targets in the three-year medium-term management plan.


Indicators and Targets

In November 2022, the Nishitetsu Group formulated its long-term vision "NNR Group CYD Vision 2035: Growing in harmony with you" with the target year of FY2035, and clearly stated the roadmap "Toward Carbon Neutrality (2050)." In addition, reduction targets in the 16th Medium-term Management Plan (FY2023-FY2025) have been set in line with the roadmap.

CO2 reduction targets:

- FY2025: 38% reduction from the FY2013 (16th Medium-term Management Plan)
- FY2035: 50% reduction from the FY2013 level (Long-term Vision)

We are aiming to achieve the national target of a 46% reduction in CO2 emissions in fiscal 2030 compared to fiscal 2013, with the entire Group aiming to become carbon neutral (by 2050).

- Toward Carbon Neutrality (2050)

Source : Nishi-Nippon Railway Co., Ltd., *Disclosure Based on TCFD Recommendations*, https://www.nishitetsu.co.jp/en/sustainability/management_promotion/disclosure_based_on_TCFD_recommendations.html (As of January 2025) Domestic Disclosure Examples : Tokyu Fudosan Holdings (Material, Buildings)

Setting multiple scenarios (1.5°C / 3°C / 4°C) and disclosing financial impact in 2030 and 2050 by each scenario and business

- Extracts risks and opportunities by scenario (1.5°C / 3°C / 4°C) and links them to strategies \checkmark
- Showing the medium- to long-term financial impact of each business and explaining resilience through \checkmark countermeasures
- 1.5°C scenario

Jrban 🔳 Hight ong Terr

mewha

Low

Low

Low

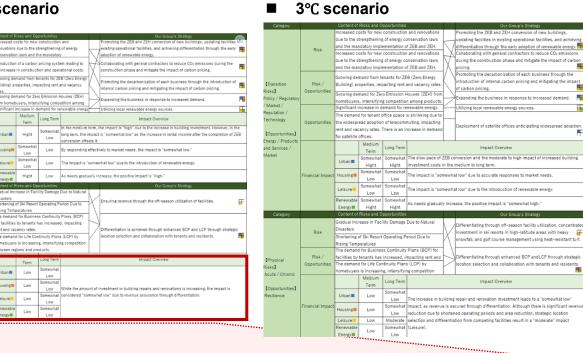
Low

Low

Hight Low

lemand for Life Cor

Low


sks]

rket/Reputa

nergy / Produ

Physical Risks cute / Chronic

pportunities

_	and the second s			
		Medium Term	Long Term	Impact Overview
	Urban 🔳	Low	Somewhat	
	orban	Low	Low	
	Housing	Low	Somewhat	
	Housing	2000	Low	While the amount of investment in building repairs and renovations is increasing, the impact is
	Leisure	Low	Somewhat	considered "somewhat low" due to revenue assurance through differentiation.
	Leisure	Low	Low	
	Renewable	Low	Somewhat	
	Energy	200	Low	

For each scenario, medium- to long-term financial impacts and countermeasures are listed for each business (city/housing/leisure/renewable energy).

Domestic Disclosure Examples : Mitsui Mining & Smelting (Material, Buildings)


Extracts risks and defines measures for each trial calculation item. Disclosure also describes the process of incorporation into the final strategy along with managing response status

- Extract risks and define countermeasures for each impact calculation item in the main businesses: \checkmark Metal Business, Functional Materials Business and Mobility Business
- Also describes the process of incorporating countermeasures into medium-term management \checkmark plans and business strategies and the situation of management

Summary of scenario analysis results for Metals Business

Impact estimation ite	ems Risks	Opportunities	4℃	1.5℃	Countermeasures
Sales	Rising market prices of products due to higher costs of mining raw materials and smelting, leading to accelerated substitution of our products and lower sales -Preference for environmentally- friendly companies	 Increased demand for non- ferrous metals due to electrification drive and rising energy storage technologies Increased market value due to accelerated decarbonization of products 	Loss	Profit	Monitor market conditions and ensure stable operations, while considering measures to cope with increased demand Accelerate measures to improve recycling rates and reduce CO2 emissions
Carbon taxes	Increased production and logistics costs due to introduction of carbon taxes	-		¥	 Reduce fossil fuel use, develop fuel conversion technologies, introduce renewable electricity and promote electrification of manufacturing facilities.
Energy prices	 Increased manufacturing and logistics costs due to rising prices for coal, electricity and other energy sources 	_			 Reduce electricity costs by strengthening demand response measures Energy consumption reductions
Raw material prices Raw materials	Sales decline due to accelerated substitution of our products caused by rising zinc and lead ore prices	_		¥	 Accelerate shift to high-margin raw materials, such as recycled raw materials and difficult-to-process ones
Sub-materials	Higher prices for chemicals and materials due to increased energy and carbon costs	-	•		Reduce chemical use per production unit • Diversify procurement sources
* Financial impact	energy and carbon costs	— ±100million –	•	± 1 billi	Diversify procurement sources

Financial impact (4°C/1.5°C) ±100million -No indication ± less than 100 million yen AV less than 1 billion yen less than 10 billion ven

Incorporating countermeasures into medium-term management plans and business strategies, the review of response status and implementation of reexamination

Risk Management Process / Integration of scenario analysis and business strategy

 Review key risks and opportunities and reconsider countermeasures

Update climate-related information

 Review risks and opportunities · Revise group-wide direction and business strategies as necessary Improve group-wide BCP

Implementation of countermeasures

 Incorporate countermeasures into the medium-term management plan and business strategies Formulate and promote group-wide BCP in response to physical risks

(Important issues at each step are determined by the Executive Council.)

Source : Mitsui Mining & Smelting, Integrated Report 2024, https://www.mitsui-kinzoku.com/Portals/0/CSR/integrated report/2024/EN1/integrated report/2024.pdf (As of January 2025)

business strategies

risks and opportunities

risk response

direction and business strategies

Domestic Disclosure Examples : Sekisui House (Material, Buildings)

The expected timing and financial impact of major risks and opportunities are shown qualitatively and quantitatively. It also specifically describes measures to be taken regarding financial impacts

- Describes the financial impact of major risks and opportunities qualitatively (large, medium, small) and quantitatively
- Categorizes the expected timing into three stages (short-term, medium-term, long-term), and specifically describe the period when the financial impact will be significant and countermeasures

Table 2. Major Risks, Potential Financial Impacts, and Responses

	Transition risk: Introduction of carbon pricing			Mentioning countermeasures during period
Impact	Carbon pricing has been widely adopted around the world. In Japan, the government is considering the introduction of a carbon tax, and it may be introduced relatively soon.	Financial impact High	Assumed time Medium-term	of high financial impact
Response	The Group as a whole and its suppliers have a long way to go in order to decarbonize th term, and if a carbon tax or emissions trading unit price of around 10,000 yen/t-CO ₂ is in We have already started a variety of initiatives throughout the value chain, including promu offices and production facilities, and reduction of CO ₂ emissions in the building materials rative efforts such as questionnaires and seminars with suppliers, and we intend to reduce	nposed, the impact o otion of RE100, energ manufacturing stage	will be significant. gy conservation in e through collabo-	
	Transition risk: Rising housing prices and a shrinking market			
Impact	In the long term, the new construction market itself may shrink as housing prices soar due to the need to comply with stricter regulations required for carbon neutrality, and as the number of houses with poor energy efficiency and seismic resistance decreases, and more high-quality housing stock is being circulated in the market.	Financial impact High	Assumed time Long-term	
Response	Because our efforts are ahead of the curve, the impact on regulatory tightening in the sh small. However, in response to further regulatory tightening in the long term, we will neer opment of cost-competitive decarbonized housing. In addition, we intend to strengthe preparation for the contraction of the new construction market.	d to work systematic	ally on the devel-	
	Transition risk: Decline in rental business revenues due to market ch	anges		
Impact	Managed properties that do not have sufficient decarbonization performance will lose competitiveness, leading to lower occupancy rates and rents.	Financial impact High	Assumed time Long-term	
Response	We will strive to increase the ratio of ZEH units in managed properties and promote dee units in order to maintain and increase the value of rental housing that appeals to renters.	carbonization remod	leling of non-ZEH	
	Transition risk: Decline in rental business revenues from managed properties with	higher disaster ris	k	
	Managed properties in disaster-prone areas will have lower occupancy rates and rents	Financial impact	Assumed time	Also clearly states the thresholds for large,
Impact	due to the increase in climate change-related disasters (floods due to rivers overflowing, landslides, etc.).	High	Long-term	medium, and small financial impact
Response	We recognize this as an issue, and are continuing to study this issue by checking governr the hazards in areas where construction is planned.	ment hazard maps a	nd understanding	
	Transition risk: Costs required to decarbonize business activitie	S		The financial impact and assumed time period are defined as fo
	In order to decarbonize our business activities, various costs will be incurred, such as	Financial impact	Assumed time	Financial impact—Large: ¥20 billion yen or more; medium: ¥10 billi small: less than ¥10 billion yen
Impact	converting business locations to ZEB, electrifying Company vehicles, and making pro- duction facilities energy-efficient.	Low	Medium-term	Assumed time period—Short term: up to 3 years from the prese

Domestic Disclosure Examples : KH Neochem Co., Ltd. (Materials, Buildings)

In the business impact evaluation, quantitative analysis was conducted referencing to the carbon price in 2030, assuming the introduction of carbon pricing

- Quantitatively evaluates the business impact of some risks and opportunities as a financial burden in a decarbonized society
- ✓ **Disclosure of estimated financial impact results** are based on carbon price as of 2030

Category		Risks/Opportunities	Key Countermeasures	
Physical risks (4 °C warming scenario)	Impact on operations due to abnormal weather	There is a risk of an increasing impact on operations from increasingly frequent abnormal weather events resulting from climate change, such as high tides, heavy rain, floods, and typhoons.	 Conducting drills to increase understanding and improve effectiveness of BCM/BCPs P73 	
	Introduction of carbon pricing	There is a risk of an increasing financial burden from the introduction of carbon taxes and other carbon pricing. Assuming CO ₂ emissions on the same level as 2023 (approx. 378 kt) and a carbon tax of 130 USD/1t-CO ₂ in 2030 (1 USD = 140 yen), the financial burden could increase by 6.88 bn yen per year.	 Promoting energy-saving and the introduction of new technologies to achieve carbon neutrality by 2050 Achieving the target of reducing greenhouse gas emissions by 30% by 2030 (compared to 2017) P11, 28, and 80 Using CO2 as raw material for products P17 Introduction of internal carbon pricing (10,000 yen/t-CO2) Introduction of renewable energy electricity P80 	
Transition risks (1.5 °C warming scenario)	Problems procuring certain raw materials	There is a risk to the procurement of raw materials from oil refineries as oil refiners reduce the number of refineries in response to decarbonization trends.	Promoting purchasing from multiple suppliers	
	Impact of switching to raw materials obtained from biomass	There is a risk of quality problems and increased procurement costs due to switching from oil-based to biomass-based raw materials.	 Maintaining and improving quality assurance ▶P77 	
	Delayed response to ESG investment	There is a risk of divestments and falling share prices due to increasing criticism received for using large quantities of fossil fuels.	 Promoting energy-saving and the introduction of new technologies to achieve carbon neutrality by 2050 Achieving the target of reducing greenhouse gas emissions by 30% by 2030 (compared to 2017) 	
Opportunities (4 °C warming scenario)	Increased need for adaptive products	There is a possibility that the increasingly negative effects of climate change will cause rising demand for products that can mitigate those effects (such as heat stroke) and help people adapt to climate change.	 Supplying more refrigeration lubricant raw materials, which are indispensable for heat stroke-preventing air conditioners P23 	
Opportunities (1.5 °C warming scenario)	ities Increased need for As people become increasingly environmentally conscious there is a		 As the transition toward environmentally friendly air conditioners accelerates across the world, expanding the provision of refrigeration lubricant raw materials compatible with the refrigerants used in such air conditioners ▶P23 Using CO₂ as raw material for products 	

KH Neochem's climate change-related risks and opportunities

Domestic Disclosure Examples : JFE Holdings (Material, Buildings)

The company could be significantly affected by climate change considering its business model. The company claims to work on improving on sophisticating scenario analysis by expanding the scope to include a 1.5°C scenario in FY2022

- Analyzes based on the International Energy Agency scenario and assuming that a common carbon price will be introduced in major emitters
- Regarding long-term scenario analysis, in addition to achieving the 2°C scenario in steel manufacturing, it conducted a risk assessment in light of the need for ultra-innovative technology for the 1.5°C scenario (IPCC 1.5°C Special Report)

Analysis Results

	Changes in Society	anges in Society Risks/Opportunities		Expectations and Concerns of Stakeholders	Strategies/Initiatives	Financial Impact (Estimate for 2030)*		
	Changes in Society				Strategres/initiatives	Details	Amount/Scale	
(15/2°C Scenario) Key Factor Decarbonization of Iron and	Increasing social demand for decarbonized iron and	Implement innovative technology to realize decarbonization	Opportunity	JFE will lead in the business of supplying steel materials with high environmental value by implementing innovative technologies such as electric arc furnaces	 Deploy anticing law-action technologies Initroducia lays-activity and technical calculars capable of manufacturing high-quality steel inconcessue of low-action direct reduced incon Develop and implement Innovative technologies Conduct studends for the practical applications of CCUB Collaborar with the ensemed for low-activity technologies Collaborar with comparison that DFs to promote steel materials with high emicromental value 	Increased sales of steel materials for their environmental added value	+120 to 150 billion yen peryear	
Steelmaking Process	steelmaking process	at a large scale	Transition risk	More investment will be needed to implement innovative technologies	Strengthen the revenue base Secure funds for investment/technological development Lobby for government support Expand sales of JGreeX ^{TM Detectore Secure S}	GX-related investment amount between 2023–2030	Approx. –700 billion yen	
		Introduction of carbon pricing	Transition risk	 Financial burden will increase due to carbon pricing Errission reduction targets will be more aggressive and stricter due to environmental changes 	Establish reliable CN technologies Engage with policymakers to achieve CN	Increased carbon pricing burden	For every 1% reduction in emissions not achieved 10 billion yen per yea	
1.5/2°C Scenario Key Factor @ Increased Needs for Effective	Increasing interest for electric arc furnace method for	Higher competition and prices for cold iron sources (scrap and reduced iron)	Transition risk	The cost of purchasing cold iron sources will increase	Collaborate with customers/users to collect scraps Establish technologies for using low- grade/difficult-to-use scrap Participate in the reduced ion supply chain project Expand scrap trading volume Reduce manufacturing cost Pass the cost to steel product prices	Increased cost of purchasing cold iron sources	Up to approx. –50 billion yen per year	
Utilization of Steel Scrap	its lower CO ₂ emissions	Increased electricity demand due to switching from blast furmace process to electric arc furmace process	Transition risk	Manufacturing cost will rise due to increased electricity usage (using more electricity and generating less by- product gas)	Reduce manufacturing cost Pass the cost to sale prices Secure a stable supply of electricity Lobby for steel product prices	Increased manufacturing cost due to switching processes (increase in electricity usage is equivalent to 0.5 nuclear power plant output)	Confidential for business reasons	
			Opportunity	Sales will increase for electrical steel sheets used in EV motors	Strengthen production capacity for electrical steel sheets Establish processing bases and supply chain structure for steel sheets globally	Increased sales of electrical steel sheets	Confidential for	
1.5/2°C Scenario Key Factor 3 Change in Demand for	Shift in demand for automobiles	Changes in the product mix due to EV production, etc.	Opportunity	Sales will increase for high-tensile steel due to improved collision safety performance	 Increase production capacity for high- tensile steel sheets 	Increased sales of high- tensile steel sheets	business reasons	
Automotive Steel		production, etc.	Transition risk	Sales will decrease for steel materials due to a shift away from internal combustion engines and a shift toward using multi materials	Develop high-performance products	Decreased sales of steel sheets for automobiles	Minimal impact	
1.5/2°C Scenario Key Factor ④		Increase in demand for	Opportunity	Renewable energy- related businesses will expand	 Expand the business undertaking the entire construction and operation of renewable energy power plants (biomass, geothermal, solar, offshore wind, etc.) 	Sales of JFE Engineering's CN-related business	Approx. 200 billion yen per year	
Increase in Demand for Solutions to Enhance Decarbonization	Transition to decarbonized society	demand for decarbonization solutions businesses	Opportunity	Business of disseminating eco solutions (advanced energy-saving technologies developed and applied in Japan) to developing countries will expand	 Solutions business for low-carbon steelmaking technologies 	Increased sales of overseas solutions business	Under assessment	

Long term (2050)

In the long term, we will develop carbon-recycling blast furnaces (CR blast furnaces), hydrogen steelmaking, and electric arc furnaces while striving to achieve carbon neutrality by 2050, as stated in the JFE Group Environmental Vision for 2050. In particular, we have been focusing on a technology that combines a CR blast furnace with CCU. This is an ultra-innovative technology that targets net zero CO₂ emissions by drastically reducing CO₂ emissions from the blast furnace process, maximizing its ability to efficiently produce high-grade steel in mass volume, and enabling CO₂ reuse in the blast furnace. The remaining CO₂ that cannot be fully reused in the furnace will be further reduced by manufacturing basic chemicals such as methanol.

Long term (2050)

International expectations have been rising for organizations to seek pathways for achieving the 1.5°C scenario. We believe the necessary actions are not significantly different from the 2°C scenario. In the 1.5°C scenario, however, the development and implementation of decarbonizing technologies would need to further accelerate, requiring significantly more R&D costs and capital investment. A public infrastructure capable of supplying cheap and ample green hydrogen and electricity would also need to be in place. We believe that addressing these issues will require more support from the government and collaboration across society, including a mechanism for broadly sharing the financial burden and a long-term government strategy for supplying green hydrogen and electricity.

FOCUS Important factor ① Decarbonization of steel processes

Taking into account the 1.5°C scenario, the company will support the transition bond and the GX League Basic Concept to maintain a financial base that can withstand huge R&D and capital investment costs due to the introduction of ultra-innovative technology and promote decarbonization efforts. , promote government support and collaboration with society

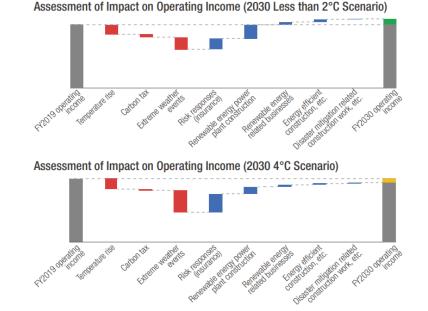
Domestic Disclosure Examples : Toda Corporation (Material, Buildings, 1/3)

Disclose the key parameters used in the scenario analysis

✓ **Disclose the parameters used in the scenario analysis** for the below 2°C (1.5°C) and 4°C scenarios

	Carbon tax				2030年		備考・出所	
				現在	4℃の世界	2℃未満の世界	雅考・山川	
Lab	oor productivity decline rate	炭素価格	炭素税	289 円/t- CO ₂	67USドル	140USドル	IEA WEO 2023 (現状政策シナリオの平均と 2050年排出ゼロシナリオの先 進国の値)	
	Number of heatstroke patients transported	施工条件	労働生産性低下率	0.4%	>0.99%	0.99%	ILO Working on a warmer planet	
	ZEB targets	~~/K	熱中症搬送者数	1倍	1.4倍	1.26倍	気候変動適応情報プラットフォ ーム	
	Building energy	建物の省 エネ	ZEB目標	_	新築建築物は ZEB水準の省工 ネ性能が必須	新築建築物は ZEB水準の省工 ネ性能が必須	脱炭素社会に向けた住宅・建築 物の省エネ対策等のあり方検討 会(国交省、経産省、環境省)	
Sc	plar and wind power		建物のエネルギー 需要量	3.7EJ	3.5EJ	3.3EJ	IEA WEO 2023	
genera	ation (excluding rooftop installations)	再工之電	太陽光・風力発電 (屋根置き除く)	45.5GW	76.6GW	111.2GW	2030年度におけるエネルギー 需給の見通し(資源エネルギー 庁)	
0	ffshore wind power generation	源拡大	洋上風力発電	_	<10GW	10GW	洋上風力産業ビジョン(第1 次) 2040年 30~45GW	
Flo	od damage to urban areas	異常気象 へ 激基化	洪水による都市へ の被害	2,000億円	2,600億円	2,200億円	国土技術政策総合研究所資料よ り推定	

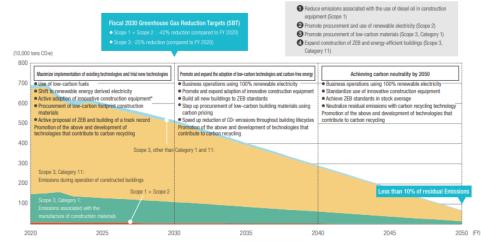
シナリオ分析に使用した主要なパラメータ


Domestic Disclosure Examples : Toda Corporation (Material, Buildings, 2/3)

The impact on operating income is illustrated in a waterfall chart. The results of scenario analysis are reviewed every year

- Discloses the impact on operating income of each risk/opportunity for the below 2°C and 4°C scenarios in 2030 in a waterfall format
- The results of scenario analysis are reviewed every year and integrated with strategy

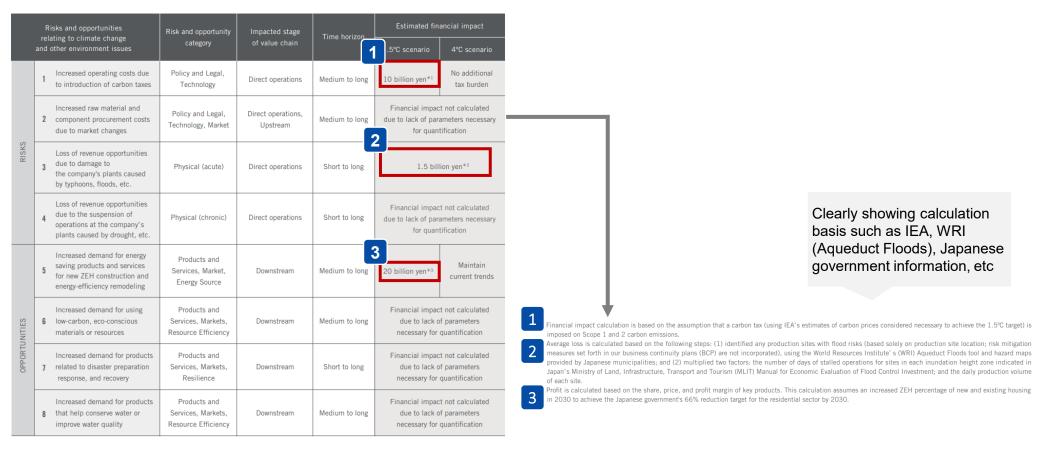
Financial Impact Assessment for 2030


Our assessment of the impact on operating income for fiscal 2030 shows that the increase in profits related to renewable energy is larger in the Well-below 2°C (1.5°C) scenario than in the 4°C scenario, resulting in an increase in operating income. Our first assessment of the impact on operating income for the year 2030 was conducted in 2020. Since then, we have reviewed the results of our scenario analysis annually, but no significant changes have taken place in our assessment of the financial impact of our risks and opportunities, so the waterfall diagram on the right has remained unchanged.

from lasty year

Domestic Disclosure Examples : Toda Corporation (Material, Buildings, 3/3)

Risk / Opport	unity category	Major items	Time axis	Examination of risks and opportunities	Measures to responses to risks and opportunities	Formulated a roadmap towards carbon neutrality in 2050				
	Chronic	Temperature rise	Medium/Long	 Decreased work productivity and increased health risks for workers due to rising temperatures 	 Promotion of construction labor conservation and automation Introduction of health management devices for workers 	as a measure to address risks and opportunities, newly				
	Acute	Risk of floods, etc.	Short/Medium/ Long	Damage to owned real estate due to risk of floods, etc.	 Assessment of risk of floods, etc. on owned real estate and when purchasing real estate Flood control measures and acquisition of appropriate insurance 	 disclosed this year The roadmap consists of the following three phases: Maximize implementation of existing technologies and trial 				
Risks	New	Changing client needs	Short/Medium/ Long	 Risk of lost sales opportunities due to insufficient ability to propose low-carbon design/construction technologies 	 Promotion of identification and procurement of low carbon products 	 Maximize implementation of existing technologies and that of new technologies Expanding the spread and introduction of low-carbon 				
	regulations	Carbon price	Medium/Long	 Increased construction costs and reduced construction investment due to higher carbon prices 	Low-carbon building material R&D and expansion of applications Promotion of low-carbon construction through TO-MINICA	 technology and decarbonized energy Achieving carbon neutrality in 2050 				
	Products / Services	Energy-saving construction	Short/Medium/ Long	Increase in sales from the proliferation of ZEB	 Promotion of technology development and accumulation of experience in construction R&D to achieve carbon-negative building construction 					
			Short/Medium/ Long	 Increase in construction investment in solar and onshore wind power plants, etc. 	 Construction of renewable energy power plants and concentration of resources on renewable energy projects 					
Opportunities	Market	Changes in the energy mix	Medium/Long	Expansion of offshore wind power generation plants Expansion of offshore wind power generation plants Concentration of resources and development of construction technology in floating offshore wind power generation						
		Construction of flood control measures	Medium/Long	 Increase in infrastructure investment relating to flood control 	 Concentration of resources on construction work for disaster prevention and mitigation 	Action Plan Summary With the goal of achieving carbon neutrality in our business activities by fiscal 2050, we are working to reduce greenhouse gas emis juided by the roadmap and the four key activities outlined below.				



STEP5. Identify potential responses

Domestic Disclosure Examples : Lixil (Material, Buildings, 1/2)

Describes quantitative calculation results and basis for the impact on important risks and opportunities

 Some of the financial impacts in 2030 are quantitatively calculated, including the impact on operating costs, the impact on damage to our own factories, and the impact on demand for energy-saving products and services

Source : LIXIL, Disclosure of Environmental Issues Including Climate Change,

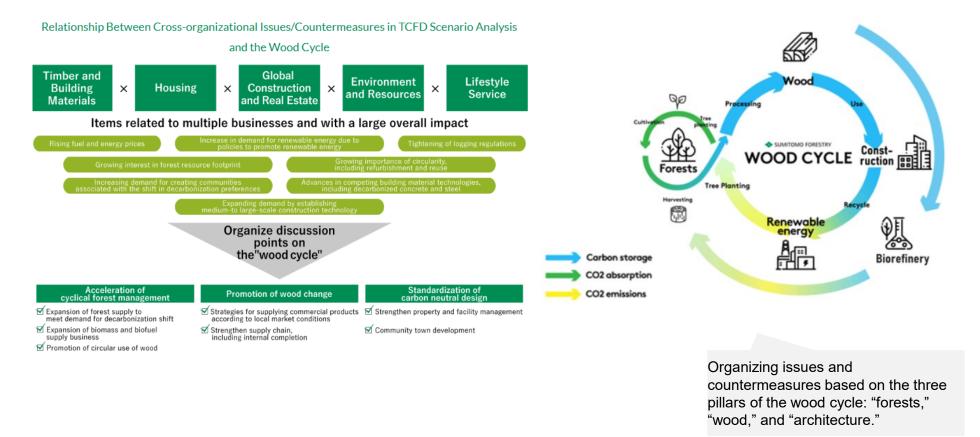
https://www.lixil.com/en/impact/environment/pdf/tcfd_tnfd_report_2024en.pdf?_gl=1*pzavgb*_ga*MTgzMTAyOTg2OC4xNzMzMTg4ODUy*_ga_4NY72RD7S3*MTczODEyNjc0OC4xMi4wLjE3MzgxMjc4NDcuNjAu MC4w(As of January 2025) Domestic Disclosure Examples : Lixil (Material, Buildings, 2/2)

Demonstrates resilience by reflecting analysis results in strategy

Measures to address risks and opportunities identified through scenario analysis are reflected in environmental strategy

c. Strategic Response to Risks and Opportunities TCFD To reduce CO2 emissions from our business sites (especially manufacturing sites), we are working to improve produ-By integrating our responses to risks and opportunities identified by the scenario analysis into our environmental strategy, we tion efficiency, defect rates, and combustion efficiency and upgrade to equipment that meets Japan's Top Runner energy efficiency standards. We are also installing solar photovoltaic systems and increasing procurement of renewable are working to mitigate risks, achieve sustainable growth, and enhance our resilience as an enterprise. energy when financially feasible, and we are a member of RE100, a global initiative of companies committed to sourcing 100% renewable electricity for their operations. Outside of Japan, we switched all faucet fitting plants and distribu More specifically, we have set out to improve the profitability of our Japanese business, which is one of our strategic initiatives tion centers (10 locations in total) at LIXIL International, which oversees all our international water-related business, to in the LIXIL Playbook that illustrates our mid-term business direction, and in helping to decarbonize housing through 100% renewable energy, as well as three plants in Mexico in FYE2023. In Japan, we started using solar power generation equipment installed through Power Purchase Agreement (PPA) on the roofs of the Otani Plant, which manufactures performance enhancements. To do this, we are reorganizing our production systems to reduce fixed costs and switch to washbasins. The Onomichi Plant, which produces faucets, is also scheduled to switch to solar power in August 2023. platform-based products, adjusting sales prices to increase productivity and profitability of our Japanese business, and this Going forward, we will continue to actively consider introducing PPA and other models that offer high additionality as means for procuring renewable energy. Over 80% of our offices, including our sales bases and showrooms in includes the timely launch of new products. Our window line-up revamp is one example. We are responding to external changes Japan, have already completed the switch to renewable energy. Furthermore, as part of our drive to help realize a flexibly, we are continually working on structural reforms and transforming into a more carbon-neutral society, we started to consider innovations that incorporate new technologies, such as the conversion to hydrogen fuel and the exploration of CCU technology to separate, capture, and effectively utilize COa emissions. growth through the expansion of our renovation business. As a result of these initiatives, we completed developing the product Increased We are also looking to apply new technologies that are currently in the research stage, and are starting studies with a operating costs platform for our housing technology business in FYE2022 and finished revamping all of our window-series products. In FYE2023. view to putting those technologies into practical application from 2030 onward. due to introduction In addition, we are consistently verifying manufacturing technologies with a view to switching to hydrogen fuel as of carbon taxes we updated the LIXIL Playbook to include the embedding of the environmental strategy into our business as a key strategic part of our business innovation activities. We conducted hydrogen combustion experiments to verify the high-tempera initiative. By continuing to incorporate our environmental strategies into our business, we aim to improve our corporate value ture furnaces used for aluminum-melting and firing sanitary ware and tiles, and we ascertained that hydrogen can be used in the same way as conventional natural gas without any issues. We conducted a successful demonstration while expanding our impact on society and the environment experiment for mass-produced equipment in LIXIL plants relating to the aluminum aging treatment process, which raises concerns over the potential impact on quality, with a view toward engineering a conversion to hydrogen fuel for aluminum profile manufacturing processes other than high-temperature melting. We are also verifying a more effective internal carbon pricing system to promote more strategic energy-saving investment over the medium to long term For more information: Climate Change Mitigation and Adaptation > Business Operations LIXIL Starts Verification of Manufacturing Technology with a View to Switching to Hydrogen Fuel and Pursuing Innovation to Help Achieve Net-zero CO2 Emissions in its Business Activities (Japanese only) Introduced LIXIL's first PPA-based solar power generation equipment in Japan at two plants (Japanese only) Supporting the Climate Change Initiative Message Calling for an Accelerated Introduction of Renewable Energy and an Earlier Adoption of Effective Carbon Pricing (Japanese only) To reduce CO2 emissions from procurement of raw materials and components, we are switching to low-The company's efforts regarding climate risks materials and components such as aluminum scraps collected from outside our manufacturing process, making products thinner, and reducing the number of components per product. In FYE2023, we started engaging with suppliers and opportunities, that account for the top 80% of all procurement-related COa emissions to help understand the current situation across our entire value chain and pursue effective COs reduction activities. We conducted a survey of suppliers that Describes future strategies and business are particularly significant in terms of reducing procurement-related COg emissions to help grasp the current situation regarding the aggregation of CO2 emissions and the setting of CO2 reduction targets. We will continue to promote strategies Increased raw material communication with suppliers based on the survey results and strengthen our collaboration to reduce procure and component ment-related CO2 emissions as well as to ensure a stable supply of raw materials and responsible procurement procurement costs At LIXIL International's water faucet factories, we carry out alloy smelting in in-house furnaces and, at our plants due to market changes in Japan, we promote the recycling of aluminum scraps from outside our manufacturing process to help reduce the amount of energy required for the manufacture of aluminum products, such as the refining of new ingots. In terms of plastic resources, we promote the effective use and recycling of resin materials by, for instance, building mechanisms to help recycle scrap materials generated in factories and introducing sorting equipment, which will ultimately enable us to recycle resin windows into new window materials.

For more information: <u>Circular Economy > Business Operations</u> Responsible Supply Chain Management > Conducting and Following Up on Responsible Procurement Survey


Source : LIXIL, Disclosure of Environmental Issues Including Climate Change

https://www.lixil.com/en/impact/environment/pdf/tcfd_tnfd_report_2024en.pdf?_gl=1*pzavgb*_ga*MTgzMTAyOTg2OC4xNzMzMTg4ODUy*_ga_4NY72RD7S3*MTczODEyNjc0OC4xMi4wLjE3MzgxMjc4NDcuNjAu MC4w(As of January 2025) Domestic Disclosure Examples : Sumitomo Forestry (Agriculture, food and forestry products)

Based on the scenario analysis results, regarding the cross-business issues,

opportunities creations are sorted out in the wood cycle while keeping in mind the three pillars of the decarbonization business: forests, timber, and architecture

- Scenario analysis revealed that climate change will have a cross-sectional financial impact on multiple businesses
- Regarding cross-cutting issues, opportunities creations are sorted out in the wood cycle while keeping in mind the three pillars of the decarbonization business: forests, timber, and architecture

Quantitative analysis of transition risk and physical risk was conducted by scope and important raw material. It also describes the estimation method that is the basis for the analysis

- Quantitative analysis of carbon tax financial impact
 amount by scope regarding transition risks
- Scope 3 analysis target categories are also enriched each year

Carbon Tax on the Asahi Group's In-house CO₂ Emissions (Scopes 1 and 2)

(Scopes Fund 2)						
		2030	2050)		
	Scope 2 electric power CO ₂ emission factor	Amount of carbon tax	Total financial impact	Amount of carbon tax	Total financial impact	
Experimental calculation for 2023	-70%	\$130/t (Developed countries)/ \$90/t (Developing countries)	8.6 billion yen	\$250/t (Developed countries) / \$200/t (Developing countries)	15.3 billion yen	
Experimental calculation for 2022	-70%	\$130/t (Developed countries)/ \$90/t (Developing countries)	9.0 billion yen	\$250/t (Developed countries) / \$200/t (Developing countries)	15.3 billion yen	

*The amount of impact is calculated based on the CO₂ emissions from the production phase.

*Both in 2022 and 2023, the Scope 2 emissions were calculated based on the IEA's World Energy Outlook 2021 (IEA WEO2021).

- The amount of carbon tax is its own estimate based on IEA NZE projections.
- The Scope 2 emissions are calculated based on the IEA WEO 2021.

Scope 3, Category 4 (Upstream Transportation and Delivery) and Category 9 (Downstream Transportation and Delivery) Financial Impact of Carbon Tax Introduction (experimental calculation for 2023)

				2030	2050	
			Scope 3, Category 4	11.3 billion yen	22.0 billion yen	
Scope 3. Category 1 inancial Impact of		uction 2050	Scope 3, Category 9	6.9 billion yen	13.9 billion yen	
Experimental calculation for 2023	56.2 billion yen	109.3 billion)	*The calculation of CO ₂ emissions covers Japan, Europe, Oceania and So Asia, which account for 90% of the Group's sales.			
Experimental calculation for 2022	52.2 billion yen	101.7 billion ye		ert is our own estimate base	1.2	
The financial impact is calc the production phase.	ulated based on the volum	ne of CO2 emissions f		is its own		
The amount of carbon tax projections.	per t is our own estimate t	based on IEA NZE	based on IEA NZE			
Since the intensity for pack calculation, we applied the unify the preconditions for	same updated intensity to		nto pro	projections.		

 Regarding physical risks, yield predictions for important raw materials and quantitative analysis of financial impact were conducted for each business
 Also describes the estimation method used as the premise

STEP3. Identify and define STEP4. Evaluate business

impacts

N	lore than a 15% decrease co	mpared to the	current yields		
Item	Country of Production	Scenario (1)	Scenario (2)		lte
	Canada (Spring)	+1%	+2%		
	France (Spring)	-10%	-18%	Mair	Ę.
	France (Winter)	-5%	-10%	1 Rav	د) Su
	Eastern Region of Germany (Winter)	+8%	+19%	v Mate	
¢	Australia	-7%	-13%	rials	
Barley	Czech Republic (Spring)	+18%	+7%	5	
bancy	Hungary (Spring)	+4%	+9%	lon-A	Raw
	Northern Region of Italy (Winter)	+10%	+14%	Vicohol	
	Southern Region of Italy (Winter)	-8%	-11%	Bevera	
	Poland	-9%	-15%	ages	6
ନ୍ତ	Czech Republic (Yield)	-5%	-7%	Cate	Co
Hops	Czech Republic (Quality)	-13%	-25%	roge	
				~	
Item	Country of Production	Scenario (1)	Scenario (2)		
	United States	-12%	-24%		lte
	Brazil	-3%	-9%		;
۸Ø	Argentina	-9%	-16%	_	Ő
Ø	China	0%	-10%	Main .	Palr
Corn	Ukraine	-17%	-26%	Foc	Ø
	Germany	-2%	-4%	N Ma	Co
	Australia	-13%	-27%	iteri	
	item	Item Country of Production Canada (Spring) France (Spring) France (Spring) France (Spring) France (Winter) Eastern Region of Germany (Winter) Australia Czech Republic (Spring) Barley Hungary (Spring) Northern Region of Italy (Winter) Poland Czech Republic (Yield) Czech Republic (Yield) Hops Czech Republic (Yield) Item Country of Production United States Brazil Argentina China Ukraine Germany	Item Country of Production Scenario (1) Canada (Spring) +1% France (Spring) -10% France (Spring) -10% France (Winter) -5% Eastern Region of Germary (Winter) +8% Australia -7% Czech Republic (Spring) +4% Hungary (Spring) +4% Northern Region of Italy (Winter) -8% Southern Region of Italy (Winter) -8% Poland -9% Czech Republic (Yield) -5% Czech Republic (Quality) -13% Item Country of Production Scenario (1) United States -12% Argentina -9% Corn Ukraine -17% Germany -2%	Canada (Spring) +1% +2% France (Spring) -10% -18% France (Winter) -5% -10% Eastern Region of Eastern Region of Australia -7% -13% Cecch Republic (Spring) +18% +7% Hungary (Spring) +4% +9% Northern Region of Italy (Winter) +10% +14% Southern Region of Italy (Winter) +10% -11% Poland -9% -15% Czech Republic (Yield) -5% -7% Hops Czech Republic (Quality) -13% -25% Item Country of Production Scenario (1) Scenario (2) United States -12% -24% -9% Argentina -9% -10% -10% Corn Ukraine -17% -26% Germany -2% -4% -4%	Item Country of Production Scenario (1) Scenario (2) Canada (Spring) +1% +2% France (Spring) -10% -18% France (Spring) -10% -18% France (Winter) -5% -10% Eastern Region of Germany (Winter) +8% +19% Australia -7% -13% Czech Republic (Spring) +4% +9% Northern Region of Italy (Winter) +10% +14% Southern Region of Italy (Winter) -13% -25% Czech Republic (Yield) -5% -7% Czech Republic (Quality) -13% -25% Hops Czech Republic (Quality) -13% -26% Brazil -3% -9% -16% Corn United States -12% -24% Brazil -3% -9% -16% China 0% -10% -26% Germany -2% -4% -26%

	item	country of froudedon	Section (1)	Section (2)
		Australia	+1%	+2%
Ma	Å	Brazil	+3%	+12%
in R	-Q	India	0%	-3%
aw N	Sugar	Japan	+2%	+21%
fate		Thailand	-26%	-45%
rials		Australia	-9%	-19%
j.	۳Ō	United States	-6%	-11%
lon-	Raw milk	Japan	-2%	-3%
Alco		New Zealand	-2%	-2%
Main Raw Materials in Non-Alcohol Beverages Category		Brazil	-8%	-23%
Beve		Colombia	-4%	-15%
erag	0	Guatemala	-11%	-17%
8		Tanzania	-2%	-9%
ateg	Coffee	Ethiopia	-8%	-25%
ζοιγ		Vietnam	-9%	-24%
		Indonesia	-10%	-30%
	Item	Country of Production	Scenario (1)	Scenario (2
	07	Indonesia (Suitable Areas)	+1%	-1%
Mai	Palm oil	Malaysia	-3%	-13%
n Ra e Fo	(M)	Ghana	+4%	+11%
M W	Cocoa	Côte d'Ivoire	+1%	+12%
Main Raw Materials in the Food Category		United States	-5%	-10%
ials	Ŕ	Canada	+16%	+28%
2.	Soybean	China	0%	+5%
		Japan (Hokkaido)	+6%	+9%

More than a 15% decrease compared to the current yields
Country of Production Scenario (1) Scenario (2)

xperimental calculations of Financial impact in 2050						
1	tem	Scenario (2)				
N	Palm oil	20 million yen				
Ø	Cocoa	-60 million yen				
Ŕ	Soybean	4 million yen				
3))	Barley	400 million yen				
Ģ	Sugar	-2.4 billion yen				

arimental Calculations of Financial Impact in 2050

Predicts values of future production and consumption volumes, GDP per capita, and input ratio of ethanol raw materials (for corn only) from past price trends

Source : Asahi Group, Sustainability Report, https://s3-ap-northeast-1.amazonaws.com/asahigroup-doc/company/policies-and-report/pdf/en/sust-report2024_en.pdf (As of January 2025)

Example of Securities Report: Kameda Seika Co., Ltd. (Agriculture, Food, and Forest Products)

In the definition of scenario groups, external scientific evidence and worldviews referenced are described. In the business impact assessment, disclose the amount of damage caused by physical risks

① 戦略

a.シナリオ分析

気候変動によるリスクおよび機会の特定にあたり、<u>当グループにおける製品およびサービスの調達・生産・供給</u> <u>までのバリューチェーン全体を対象として、</u>国際機関等が公表するシナリオをもとに4℃シナリオと2℃シナリオ の2つの将来世界観を整理し、2030年時点における当グループへの影響を考察するとともに、それぞれの世界観に おけるリスクおよび機会を特定しております。

4℃シナリオ、2℃シナリオにもとづく将来世界観	
4℃シナリオ	2℃シナリオ
気候変動対策への取り組みは現行の政策や規制以上の	世界規模でのカーボンニュートラルの達成に向けて低
進展がなく、化石燃料由来のエネルギーが継続的に使	炭素化が推進され、世界の平均気温が2℃程度の上昇
用されることによって温室効果ガス排出量が増大し、	に抑えられる将来予測。脱炭素化に向けた厳しい法規
産業革命期頃と比較して、2100年頃までに地球平均気	制や税制が施行され、温室効果ガスの排出量が抑制さ
温が4℃以上上昇する将来予測。台風や豪雨をはじめ	れることにより、気温上昇が抑制され異常気象等物理
とする異常気象の激甚化や、慢性的な気温上昇に伴う	的リスクの規模や頻度は 4 ℃シナリオに比べ縮小する
作物生育への悪影響といった、気候変動による直接的	ものの、脱炭素化に向けた社会構造の変化に伴い、移
な被害が増加するのに対し、法規制や税制という形で	行リスクは高まる。
の市場への締め付けは強化されないため、移行リスク	
としての影響度は小さい。	
(参考シナリオ)	(参考シナリオ)
IPCC(気候変動に関する政府間パネル):RCP8.5	IPCC(気候変動に関する政府間パネル):RCP2.6
IEA (国際エネルギー機関) : STEPS	IEA(国際エネルギー機関):SDS/NZE2050

重要課題となり得るリスク項目の中で定量的な分析が可能な項目については、2030年時点における財務インパクトを推定し、4℃シナリオにおける「生産工場に対する物理的被害の拡大」および「プラスチック製包装資材の価格上昇」、2℃シナリオにおける「カーボンプライシングの導入によるコスト増加」が特に大きな影響を及ぼす可能性があることを確認しております。

なお、当グループの主原料である米の収量および価格の分析にあたり、外部機関が開示する将来予測パラメータ では、空気中の二酸化炭素濃度の上昇が米の生育に寄与するほか、気温上昇による生産地拡大などにより収量の増 加および販売価格が低下すると予測されており、各将来予測シナリオにおける米価格予想、平均収量の推移、消費 生産バランス等の要素から試算した結果、仕入れコスト減少の可能性を確認しております。

一方で、水田の水温上昇などに伴い品質低下が見込まれていることから、こうした米を原料にしながらもおいし い米菓を引き続きお客様にお届けできるよう、製品開発や社会貢献の可能性を模索するのが当グループの役割であ り、既存の取り組みを継続・加速するとともに、新たな対応策の検討も推進していきます。

- References to external scientific evidence and worldviews for multiple scenarios
- Quantitative impact is disclosed for the "expansion of physical damage to production plants" in the 4°C scenario
- Breakdown of damage amounts is provided, but no basis for calculation is provided

Appendix 1-36

Domestic Disclosure Examples : Kirin Group (Agriculture, food and forestry products)


Based on the company's business characteristics, the financial impact of assumed risks and opportunities is estimated qualitatively and partially quantitatively, and the results are disclosed

 Assumes important risks and opportunities in 2030 and 2050 based on the characteristics of the company's strategy, business model, and supply chain, and estimates the financial impact qualitatively and partially quantitatively.

Financial impact on the procurement of agricultural products from carbon pricing [medium to long term]

The prices of agricultural products may spike if governments introduce carbon taxes and carbon border adjustment mechanisms.

Figure 2 shows the results of our estimation of the financial impact of carbon pricing on agricultural product prices. In 2023, we estimated the impact for Kirin Brewery, Kirin Beverage, Mercian, Lion, Kyowa Kirin, and Kyowa Hakko Bio. Our estimates covered the following agricultural products: barley, hops, tea leaves, grape juice, starch, lactose, corn, and cassava. In our estimates, we calculated that the impact would be approximately 0.9 billion yen to approximately 4.4 billion yen under the RCP2.6/SSP1 scenario and approximately 2.4 billion yen to 8.8 billion yen under the RCP8.5/SSP3 scenario in 2050. The range of the 25-75 percentile was twice as large for the RCP8.5/SSP3 scenario than the RCP2.6/SSP1 scenario, from which we can conclude that uncertainty is higher and the risk is more significant.

¹² Impact on agricultural product procurement costs from carbon pricing

*1 The socioeconomic systems in the papers we used for our estimates differ from the Kirin Group scenarios, so we have created and disclosed our estimates under the RCP2.6/SSP1 and RCP8.5/SSP3 scenarios in these papers (sources are listed in reference documents).

*2 Recalculated with 2023 data

(Some excerpts from the risk/opportunity items regarding the cost impact of carbon pricing)

Domestic Disclosure Examples : FUJI OIL HOLDINGS INC. (Agriculture, Food, and Forest Products)

Business impact is assessed as "small, medium, or large", according to the size of the scale, including time of onset and period of impact. Countermeasures are also disclosed

1.5°C scenario

Details

The Group seizes the following opportunities by leveraging its differentiated and integrated technologies and by co-creating solutions with customers to enhance product competitiveness through the addition of better flavor, richness of taste, and aroma to plant-based ingredients, resulting in dramatically increased sales for the Group.

- As more and more people place greater priority on environmental problems, consumption of plant-based protein (e.g., meat and dairy alternatives) thrives and the global market for such alternatives grows dramatically, mainly among Millennials, Generation Z, and vegetarians. These groups hold the view that raising livestock requires large amounts of feed, water, and land, causing water shortages and deforestation, and exacerbating climate change. Therefore, they attach greater importance to sustainability and express their values through their consumption behavior.
- While the demand for meat and dairy increases mainly in low- and middle-income countries, there is a global supply shortage of meat and dairy. This is due to global population growth, economic development and dietary changes as well as adverse impacts on livestock production caused by extreme weather events, natural disasters, and the rise in the average global temperature due to climate change. Demand for plant-based protein (e.g., meat and dairy alternatives) increases to make up for this shortage. Demand for plant-based protein expands as Japan, the US, and Europe transition away from their dependency on animal protein toward plant-based protein, and due to a shortage of protein in regions such as Sub-Saharan Africa and South Asia.

The Group seizes the following opportunities by leveraging new and existing technologies from the Group's R&D in the polysaccharide business, stabilized DHA/EPA business, and other functional high-value-added products businesses, as well as the chocolate and plant-based protein businesses, leading to increased sales for the Group.

- Global climate change has shifted the temperature region of infectious diseases such as dengue fever and malaria, causing outbreaks in countries and regions where they have never occurred before. Also, there are new health issues such as higher cases of heat stroke. Health awareness grows over time as a result.
- Adding to the increase in these infectious disease outbreaks and cases of heat stroke is an anticipated sharp rise in lifestyle diseases such as obesity, diabetes and dementia in regions including South Asia, Europe, Africa, North America, and Central and South America. This leads to greater consumer needs for immunity-boosting, highly nutritious, high-protein, and low-sugar foods that help prevent such health issues, driving increased demand and market expansion for lactic acid bacteria, DHA/EPA, polyphenols, proteins, peptides, and low-sugar chocolates.

 With more people in society placing greater priority on environmental problems, the concept of One Health² gains traction across all generations, increasing demand for products focused on human and environmental health. As a result, the Group sees rising demand for its PBF products, which contribute to environmental conservation and improved health through their potential benefits in preventing infectious diseases, heat stroke, and lifestyle diseases such as obesity, diabetes and dementia. Time of onset and period of impact for the period of impact are disclosed separately.

Not only is the degree of impact is disclosed quantitatively, the time of onset and duration of impact is shown as well

Quantitative assessment based on 3 categories of risk impact

Small : Impact less than 2 billion yen Medium : Impact of 2 billion yen or more to less than 10 billion yen Large : Impact of 10 billion yen or more

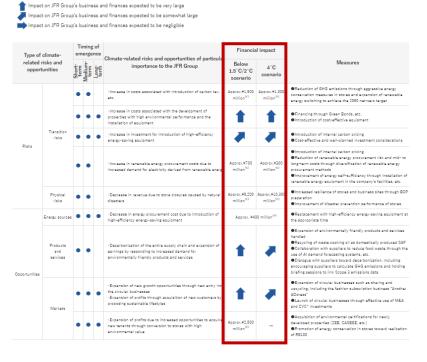
✓ Detailed policy on risk response measures

Time of onset	Duration of impacts	Impact level	Time of onset	Duration of impacts	Impact level
Within 5 years	Longer than 10 years	Medium	Within 10 years	Longer than 10 years	Medium

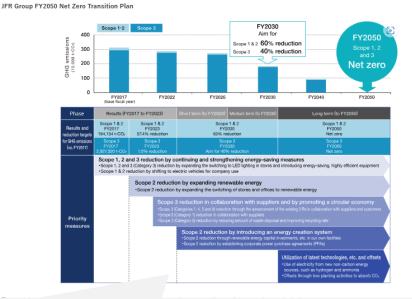
Response approach

• Conserve the environment through sustainable procurement

• Offer plant-based ingredients, one of our Group' s strengths, to address social issues and foster the next-generation of businesses in a decarbonizing society


- Build a global research network and promote open innovation
- Recognizing changing market dynamics and needs such as rising health consciousness and ethical awareness due to climate change impacts as an opportunity, conserve the environment through sustainable procurement and offer plant-based ingredients, one of our Group's strengths, to address social issues and foster the next-generation of businesses in a decarbonizing society
- By establishing the systems needed to develop products and promote business strategies that accurately respond to market trends, we will focus on new challenges such as revising our business portfolio for high value-added products and optimizing our production across the Group in anticipation of these future changes in the business environment.
- By building and actively participating in an industry-academia consortium with research institutions worldwide and promoting open innovation using Fuji Oil Global Innovation Center Europe (GICE) as a hub, we will acquire new technologies and develop global human resources that will accelerate the creation of social value in a decarbonized society.

Domestic Disclosure Examples : J. Front Retailing (Trading, Retail)


Financial impact of risks and opportunities is listed quantitatively and qualitatively, and the analysis results are reflected in long-term business strategies to strengthen resilience in either scenario

- Assuming important risks and opportunities as of 2030, the company qualitatively and partially quantitatively estimated the financial impact of two types of scenarios, 1.5°C/less than 2°C scenario and the 4°C scenario, and countermeasures are listed for each opportunity item.
- In qualitative evaluation of business impact, the degree of financial impact is expressed by threelevel arrows for each scenario

risks and opportunities of particular importance to the JER Group and their financial impacts in EY2030

 The results of scenario analysis are reflected in long-term business strategies to strengthen resilience

- To achieve net zero in 2050, the company formulated a transition plan to achieve net zero in 2050, based on the need to strengthen strategic resilience from a medium- to long-term perspective even under three temperature zone scenarios
- To achieve the reduction targets for FY2030 and FY2050, the company plans to expand energy conservation and renewable energy, promote a circular economy, introduce energy creation systems, and utilize new technology

Example of Securities Report: Isetan Mitsukoshi Holdings Ltd. (Trading, Retail)

In each scenario, impact on the company is illustrated along with relationships with the government, suppliers and consumers

STEP3. Identify and define range of scenarios

✓ Based on external scenarios, changes in the external environment in a world of less than 2°C/4°C are summarized using the relationship between government/administration, suppliers, consumers and the company

4 Degrees Warming World - The World Continues on Its Current Path and Natural Disasters Intensify

Domestic Disclosure Examples : Mitsubishi Corporation (Trading, Retail)

Mitsubishi develops its own 1.5°C scenario based on published scenario, conducting detailed scenario analysis which most suites their business model. Furthermore, the analysis is applied when determining policies and initiatives.

- Mitsubishi discloses prerequisites and calculation logic on the company's unique 1.5°C scenario (1.5°C \checkmark scenario for FY2022)
- Businesses that are significantly affected by the transitional risks and opportunities by climate change may be targeted for 1.5°C scenario analysis. Detailed analysis and formulation of business policies and approaches are conducted in accordance with the characteristics of their businesses. Transitional risks cover "natural gas/LNG" and "coking coal" among businesses classified as "transformational businesses," while transition opportunities cover "renewable energy" businesses.

The 1.5°C Scenario Used in FY2022

We used the IEA Net Zero Emissions by 2050 Scenario (IEA NZE) as a reference for our 1.5°C scenario analysis in FY2021. However, the IEA NZE data lacks the granularity required to extract precise insights that reflect MC's particular business characteristics and strategies. As such, MC collaborated with a third-party organisation to create and utilise a customised, specific model of the 1.5°C scenario (FY 2022 1.5°C Scenario), while aligning key assumptions with the IEA NZE wherever possible, thus allowing for a detailed level of granularity on topics like demand by region and product. Key assumptions for the FY2022 1.5°C scenario and the comparison with the IEA NZE are shown in Table 1 below.

Table 1 Key assumptions for the FY2022 1.5°C scenario and the comparison with the IEA NZE

	FY2	FY2022 1.5℃ scenario		IEA NZE			
Item	Unit	2030	2050	2030	2050	Notes	
1 GDP CAGR	%	3.2	2.4	~3	~3	IEA NZE discloses only approximate numbers	
2 Population	Bil ppl	8.5	9.7	8.5	9.7	Aligned	
③ Net CO2 Emissions	Gt CO2e	25.8	-2.4	21.1	0	Broadly Alligned (NZE does not include land use change.)	
4 Final energy use	EJ	429	400	394	344	See below for further detail	

Explains the assumptions 30 of the original scenario and 284 how it differs from IEA scenario

A. Natural Gas / LNG [Analysis of Business Environment]

In formulating MC's LNG business strategy, it is important to understand the trajectory and scale of LNG demand under the 1.5°C scenario, which assumes that decarbonization progresses. From this viewpoint, MC verified and analyzed (1) The primary energy supply of oil and natural gas, (2) Natural gas demand, and (3) LNG demand based on the FY2022 1.5°C scenario.

(1) The Primary Energy Supply of Oil and Natural Gas

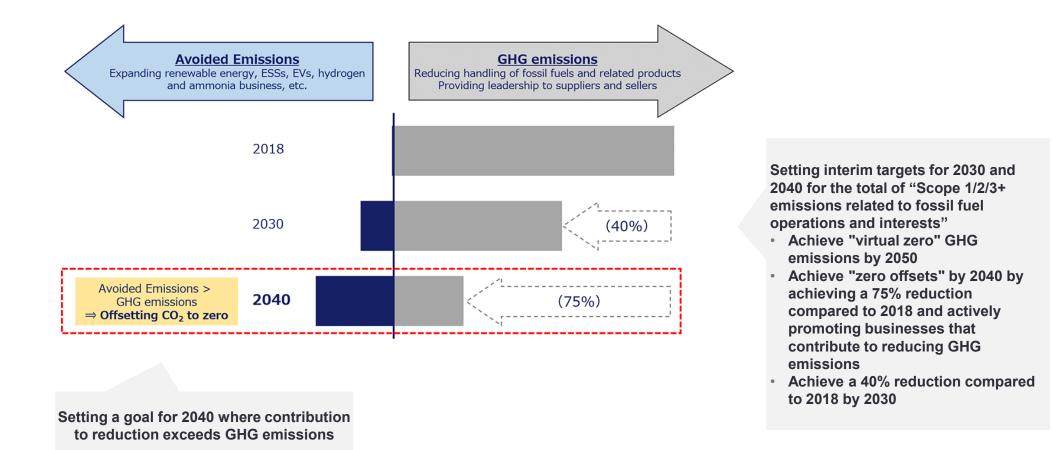
The ratio of oil and natural gas among primary energy supply does not differ significantly between the FY2022 1.5°C scenario and the IEA NZE. Both scenarios project that energy from oil and natural gas will decline to approximately 265-285 exajoules (EJ) in 2030, and to approximately 100 EJ in 2050. This figure falls within the range of other 1.5°C scenarios for 2050, including the IEA NZE published by the WBCSD (see Chart 3) [Monitoring and Discussion Items for Transform Discussion]

In consideration of the business environment mentioned above, for natural gas and LNG businesses, MC will monitor and discuss at the management level the current status and trends of climate change transition risks and, more specifically, items that could affect supply and demand (see below) in the "Transform Discussion" introduced in the Midterm Corporate Strategy 2024 as one of the sustainability measures. Such results shall be incorporated into the final business strategy.

· Geopolitical risks such as the current energy crisis and situation in Ukraine

- · Natural gas, LNG, and decarbonization policies of our partners, such as LNG consumers and maior oil and gas companies
- Advances in low-carbon and decarbonizing technologies such as renewable energy, nuclear power, next-generation energy and CCUS envisioned by the company for each

· Trends in climate change-related regulations, including policies on natural gas and LNG, and GHG emissions reductions by various governments


and initiatives based on scenarios

business

Domestic Disclosure Examples : Itochu Corporation (Trading, Retail)

Concisely describes initiatives and reduction policies in the transition plan in two directions: GHG emissions and contribution to reduction

✓ Describes the policy for initiatives aimed at achieving net zero GHG emissions by 2050, along with intermediating targets for carbon offsets through contribution to reductions

Source : Itochu Corporation, Climate Change (Information Disclosure Based on TCFD Recommendations), https://www.itochu.co.jp/en/csr/environment/climate_change/index.html (As of January 2025)

Domestic Disclosure Examples : ASKUL Corporation (Trading, Retail)

Scenarios are defined by defining the worldview for each supply chain

Defining the worldview of each 2°C/4°C scenario for each supply chain \checkmark

●シナリオ群の定義

シナリオ分析では、サプライチェーンを含むグループ全体を対象とし、IEA等の科学的根拠等に基づき2°Cシナリオと4°Cシナリ オ、それぞれの世界観を定義し、2030年社会を考察しました。

	4℃の世界	2℃の世界
政策·規制	(特段の政策、規制なし)	規制強化(炭素税引き揚げ、森林資源保護) 支援政策実施(再プラ認証制度など)
調達	洪水 によるサプライヤ工場への被害増加 再エネの普及は進まず、原油価格上昇	(洪水影響 軽微) 再エネ普及による電力価格上昇 森林保護規制強化による原材料費高騰 再プラ規制による原材料費高騰
保管·配送	洪水 等による施設・配送への被害増加 原油価格上昇による電力コスト増加 真夏日が増加し冷房等の費用増加	「4℃」ほどではないが 洪水 等による被害増加 炭素税上昇などにより 再エネ、EVにシフト 「4℃」ほどではないが 冷房等の費用増加
商品利用・ 回収	「2℃」ほどではないがサステナブル商品需要増 暑さ対策・防災関連商品の需要が拡大	政策支援もありサステナブル商品の需要増 サーキュラーエコノミーへの需要増

Domestic Disclosure Examples: KDDI株式会社(Electricity, Machinery, Communication)

Scenario analysis on transitional and physical risk was conducted and measures are established. Disclosure describes specific measures for base station facilities, in which identified as high risk on business such as flood risk

- Extracts migration risks and physical risks and describes countermeasures respectively
- Paying particular attention to business risks due to water damage, and measures to be taken at communication station buildings that are highly affected are described

The 4°C scenario in which physical impact will become apparent due to lack of measures against climate change (the increase in the global average temperature is held at 4°C above pre-industrial levels)

Water risk assessment and our response

Climate change in recent years has increased concerns about business risks, including water damage. KDDI conducts water risk assessments and implements countermeasures as a preliminary measure to prepare for efficient recovery activities in the event of a disaster.

Reference: IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report

Analysis of F	Physical Risks	KDDI's Risks	KDDI's Responses		
Acute Risk	Increase in severity and frequency of disasters caused by extreme weather (typhoons, floods, etc.)	Risk of increased costs such as personnel expenses for emergency recovery in order to respond quickly to the restoration of the communication network	Preparation for efficient recovery operations by reviewing the BCP [3] and conducting disaster recovery drills		
Chronic Risk	Increase in average temperature	Risk of increased air-conditioning power usage in data centers to cool servers entrusted to us by our customers [2]	Installation of highefficiency air conditioning systems and replacement with renewable energy power		

[2] Of the 3,000 operation and maintenance personnel, the remaining 2,000 operation and maintenance personnel are to cover the normal workload of 1,000 dedicated to emergency recovery, which is estimated to be 4 hours of overtime per day for 10 days, based on past examples of disaster recovery at each site. The cost of reviewing the BCP from a medium-term perspective (~2030) and conducting training based on the BCP is assumed to be approximately 96 million yen.

[3] Business Continuity Plan

inundation zone (estimated maximum: once in 1,000 years)" as determined by the Ministry of Land, Infrastructure, Transport and Tourism or the prefectural government.
[Examples]

Example 1
Site
Site
Installation of water proof door, covered glass window by concrete wall (water barrier wall), raised ducts for generator supply and exhaust ports
installation of backflow prevention valves in toilets, etc.
Construction period
June 2022

KDDI systematically carries out countermeasure works at sites that are highly susceptible to flooding based on the estimated height of inundation in the "expected flood

• Example 2	
Site	Site B in Kyushu are in Japan
Measurement	Installation of water proof door and water barrier shutter, convered opening such as window by concrete, waterproofing measures for generator supply and exhaust ports, etc.
Construction period	By the end of FY2024

Water proof door

Raised ducts for generator supply and exhaust ports

Water barrier wall

Domestic Disclosure Examples : NTT Data (Electricity, Machinery, Communication)

As for business impact assessment, the business/financial impacts and measures/costs are described quantitatively and qualitatively, as well as disclosing the basis of calculation

Climate Change Risks and Response

Time horizon: Short term

Loss of reputation due to delayed responses [Transitional risk: Reputational]

Assumed business and financial impacts

In recent years, various regulations are anticipated globally due to the growing trend toward environmental consideration, and companies' attitudes toward sustainability have increasingly influenced the decision-making of stakeholders, including shareholders and consumers. If companies delay in responding to investor demands for climate change–related information disclosure or fail to adequately implement GHG emission-reduction initiatives, they face risks such as declining stock prices from negative investor evaluations and deteriorating funding conditions in the market.

Financial impact

If our stock price were to decline 1% due to a diminished reputation among ESG investors and financial institutions, we estimate that our market capitalization would decrease by ¥34 billion* (based on the assumption that this event occurs once between fiscal 2022 and fiscal 2025).

* Estimated based on the stock price and the number of issued shares as of the end of fiscal 2023

Measures and costs

Establishment of the Sustainability Committee and advancement of in-house initiatives

To promote the Group's initiatives regarding climate change, we established the Green Innovation Office as a dedicated organization in October 2021 and launched the Green Action Committee. In April 2024, we evolved this into the Sustainability Committee (Reference page] Sustainability Management "Promotion System") to advance sustainability management from a broader perspective.

Costs

The Green Innovation Office is engaged in various initiatives that include developing and providing services aimed at accelerating the transition to greener solutions for our clients and society, as well as promoting innovation for GHG emission visualization and reduction actions aimed at achieving our own net-zero goal. We have allocated ¥6 billion for the activities and innovation-based investments of the Green Innovation Office for the cumulative period from fiscal 2022 to fiscal 2025.

(Partially Excerpted)

- ✓ In business impact assessment, not only the financial impact but also the basis for calculating the financial impact are described quantitatively
- Qualitatively details the business and financial impact of each risk/opportunity and supplements quantitative information
- In defining the measures, includes not only specific measures, but also investment amount and investment philosophy
- ✓ Details qualitatively the company structure for measures, the specific details of the measures that have already been taken, and the cumulative amount of investment from FY2022 to FY2025 for the countermeasures and supplements quantitative information

Source : NTT Data, Sustainability Report 2024 Data Book, https://www.nttdata.com/global/en/-/media/nttdataglobal/1_files/sustainability/susatainability-report/2024/sr2024.pdf (As of January 2025)

Domestic Disclosure Examples : Ricoh Group (Electricity, Machinery, Communication)

The impact and financial effects of each risk and business opportunity are quantitatively described. Particularly, for business opportunities, mitigation and adaptation are focused and efforts and achievements are disclosed

- Quantitatively describes the impact and financial effects of each risk and business opportunity identified in scenario analysis
- ✓ Opportunities are classified into two, Activity-based and Business-based
 - For Activity-based opportunities, specifies FY2023 results and financial contribution focusing on contribution to mitigation/adaptation
 - For Business-based opportunities, specifies the sales targets for Social issue-resolving businesses

Degrees of risk impact and urgency (transition and physical risks)

Based on scenario analysis, we have identified major risks that can impact Ricoh Group finances. We investigated each respective climate change, resource circulation and biodiversity risk, combining those that overlapped, and classified them into transition and physical risks, before estimating the degree of impact (financial) and urgency (likelihood of occurring) in line with the concept of a company-wide risk management system. We will increase our resilience to environmental impacts by firmly implementing responses based on these levels of impact.

Risk Category	Risk Type	Field	Item	Risk Scenario (Impact on Ricoh Group)	Impact	Urgency	The Ricoh Group's response	Related	creation ser
	Policy and legal	Climate change Resource circulation	1. Rising procurement costs from stronger policies	 The introduction of carbon pricing measures, such as carbon taxes and emissions trading, along with circular economy policies that encourage the use of recycled materials and taxing plastic packaging have increased procurement costs as suppliers pass on higher raw material prices 	¥1 billion~ ¥20 billion	Within 5 years	Supporting supplier decarbonizing activities Reducing virgin material usage ratio through downsizing, weight-saving and recycled materials	page P.21	new busine office equip energy busi
Transition risks	Policy and legal	Climate change Resource circulation	2. Stricter regulations and delays in responding to customer demands	 Strengthening environmental regulations for products and companies and tightening stricter customer requirements to reach the 1.5°C target and build a circular economy. Losing business opportunities and earnings declining from delayed responses 	¥20 billion– ¥50 billion	Within 3 years	Actively implement measures on energy-saving and renewable energy that contribute to the 1.5°C SBTi Disclose data on CFP, SuMPO EPD, content rates of recycled material used in products, etc. Fundraising by using sustainability initiatives	P.22	
(1.5°C scenario*')	Market	Climate change Resource circulation	 Business performance impacts of changing consumer behavior 	Decreased revenues from the rise of teleworking and a shift toward paperless processes to reduce wasteful printing	¥1 billion~ ¥20 billion	Within 3 years	Maintain and expand the customer base for our existing office printing business Expand into the office services field of business	P.23	
	Reputation	Climate change Resource circulation Biodiversity	 Lost social trust and damage to brand value 	 Violations of environmental laws, such as illegal dumping, involvement in deforestation, or lost social trust owing to greenwashing, and other factors 	¥1 billion~ ¥20 billion	Within 1 year	Enforce our environment management system Strengthen our industrial waste management system Promote procument of sustainable raw materials Give employees awareness training on greenwashing	P.23	Contribution
	Acute	Climate change	1. Rapid increases in natural disasters	 Climate change is driving more extreme weather events, causing unexpected wind and water damage at Group production sites suppliers. This can disrupt supply chains, leading to production stoppages and lost sales opportunities. The costs of tackling climate change are ring, including disaster countermeasures, office relocations, and electricity expenses. 	¥1 billion≁ ¥20 billion	Within 5 years	Assess and analyze flood damage risk to our supply chain, and take countermeasures Reinforce flood measures at sites in Japan	P.24	to mitigation
Physical risks (4°C scenario* ²)	Acute	Climate change	2. Regional infectious disease epidemics	Unforesen circumstances from the spread of infectious diseases may result in: • Delays or stoppages in parts supplies, product manufacturing, or transportation • Delays or stoppages in supplies to sales companies	¥1 billion~ ¥20 billion	Within 10 years	Implement BCP that can plan for emergencies Select multiple suppliers of important parts, or select substitute parts Practice a BCP that predicts new work styles such as teleworking	P.25	
	Acute	Climate change Resource circulation Biodiversity	3. Declining forest resources	 Global warming is causing more forest fires, insect infestations, and other forest destruction, leading to stricter regulations and higher paper procurement costs 	Up to ¥1 billion	Within 10 years	 Reduce base paper use with silicone-top linerless labels, which do not use any release coated paper Strengthen forestry conservation activities (One Million Trees Project) 	P.25	Contribution to adaptation

Activity-based Opportunities

Clin Resou Clin Resou Clin Resou

Climate change

Resource circulation

Climate change Resource circulation

Climate change Resource circulation

The provision of products and solutions that help customers reduce their environmental burden by taking advantage of our energy-saving, resource circulation, and energycreation services; expanded sales of solutions that help combat infectious diseases, and new business creation have brought us various opportunities. Currently, eco-friendly office equipment, solutions to combat infectious disease, and the environmental and energy businesses have contributed to sales on the scale of ¥1 trillion.

Field	Overview of FY2023 results	FY2023 Financial Contribution Amount	Related page
mate change urce circulation Biodiversity	 Sales of eco-friendly products Strengthening energy-saving, use of recycling, and control of chemicals 	Approx. ¥1,230 billion	P.26
mate change urce circulation	 Reuse and recycling businesses Recycle design, sales of recycled equipment 	Approx. ¥30 billion	P.26
mate change urce circulation	 Sales from business deal negotiations involving ESG compliance Bidding, sales negotiations 	Approx. ¥40 billion	P.27
	4. Rusiness-based Opportun	itios	

To better demonstrate to all stakeholders our progress in aligning ESG with business growth, we clarified the businesses and the sums they contribute to resolving social issues, and set sales targets for fiscal 2025. The results for fiscal 2023 are shown below.

Materiality	Social issue-resolving businesses	FY2025 targets	FY2023 sales
Zero-Carbon Society Circular Economy	Eco-friendly MFPs Commercial printing Silicone-top linerless labels Label-less thermal, and others	¥450 billion	¥315 billion
Creativity from Work	Office services Smart Vision, and others	¥1,050 billion	¥926 billion
Community and Social Development	GEMBA (Maintenance and services for non-office sites) Municipal solutions Educational solutions, and others	¥50 billion	¥20 billion

*11.5°C scenario: A scenario where the global average temperature increase is below 1.5°C t *2 4°C scenario: A scenario where the global average temperature increase is 4°C by 2100

Regarding the results of contribution, specific cases are explained in the following pages

Source : Ricoh Group, TCFD Report 2023, https://www.ricoh.com/-/Media/Ricoh/Sites/com/sustainability/report/pdf/Ricoh_Group_Environmental_Report_en_web?241028 (As of January 2025)


Domestic Disclosure Examples : Teijin (Electricity, Machinery, Communication)

Disclosure indicates a roadmap as initiative that aimed at achieving net zero company emissions in 2050

Create a roadmap for each scope of initiatives to achieve net zero in 2050 in line with the strategy

Roadmap for Reducing Group CO₂ Emissions (Scope 1 + Scope 2)

Regarding CO₂ emissions, Teijin is implementing initiatives based on its roadmap to achieve net zero emissions by 2050, including shifting to renewable energy sources for electricity and clean energy for heat sources. The shift to renewable energy is progressing smoothly in Europe and is ahead of schedule in China. In addition, projects to fully phase out coal have finished in Thailand, and are likely to be completed in Japan by the end of FY2025, with the full benefits of these projects set to manifest from FY2026.

Describes the efforts in the transition plan in line with the strategy (partial excerpted)

"To reduce the impact on the global environment associated with our business activities, we will work to eliminate coal-fired power generation, as well as promote energy conservation and renewable energy, and technological innovation such as process innovation" Domestic Disclosure Examples : EBARA Corporation (Electricity, Machinery, Communication, 1/2)

Refers to scientific scenarios such as the IEA, and details the worldview of multiple scenarios set

- ✓ Sets two scenario groups with reference to IEA WEO and IPCC
- Quantitatively analyzes risks assumed in business for Building and Industrial Equipment market and other market using parameters

		•			s has been changed.)	
Paran	neters	At present (~2020)	4°C	2050 1.5℃	Primary Resources	
Carbon pricing		Introduced in EU	Limited introduction of carbon pricing	Rising carbon prices in all regions 55~250US\$/t CO ₂	IEA	
GHG emissions targets		Country-specific goals	Country-specific goals	Most major countries pursuing carbon neutrality	Various government websites, etc.	
	where major manufacturing	Base year= 1	Slight increase or decrease	Increase by more than 40% depending on the region	IEA	
Expansion of the refrigerant pr	oduct market	Base year= 1		+Approx. 200%	Our estimates based on various literature	
Top runner motor standards					Our research	
Market trends for pumps and re	frigerators	Starting point	-		Various literature	
Power source configuration		Starting point	Oil and gas-derived products decrease and renewable energy ratio increases	Oil and gas-derived products decrease, Oil and gas sources down to nearly 0 and renewable energy ratio increases over 80% renewable energy		
Demand for more efficient ener	gy-related assets	Base year= 1	Approx. 2.7% global improvement	Approx. 3.5% global improvement	IEA	
Increased Zero Emission build	ngs	Standard setting	Cannot be expected to grow	Be expected to grow substantially	IEA and the Ministry of Economy, Trade and Industry	
Increase in temperature		Starting point	Short-term: +1.6°C Medium-term: +2.4°C Long-term: +4.4°C	Short-term: +1.5°C Medium-term: +1.7°C Long-term: +1.8°C	IPCC	
Increase in electricity consump	tion for air conditioning	Starting point	Energy consumption increased due to	Energy consumption increased due to an increase in the average temperature.		
arameters			: Unable to obtain reliable external part	ameters.		
Paran	eters	At present (~2020)	20 4°C	50 years 1.5°C	Primary Resources	
Frequency of typhoons and cyo	lones	22 (Typhoon 2021, Japan) World: Unknown			Meteorological Agency, Ministry of the Environment	
	Frequency of occurrence	Criteria= 1	Approx. 2.7 times	Occurrence frequency: Approx. 1.5 times	IPCC IEA	
Heavy rain (global)	Strength	Criteria= 1	Up about 30.2%	Jp about 10.5%	Sao Paulo Research Foundation	
Frequency of Floods (Japan)		Criteria= 1	Approx. 4 times	Approx. 2 times (Japan 2°C scenario)	Ministry of Land, Infrastructure an Transport, etc.	
	Carbon pricing GHG emission sturgets Edentify prices (in countries w Edentify prices (in countries w Edentify prices (in countries w Expansion of the referent pr Top runner motor standards Market trends for pumps and re Power source configuration Demand for more efficient eme Increase in temperature Increase in temperature Increases in temperature Requency of typhoons and op Energy run (dobta)	Parameters (As of Jur Carbon prioring Carbon prioring GHG emissions targets Carbon prioring Expension of the refrigerant product market Carbon prioring Expansion of the refrigerant product market Carbon prioring Tor unner mote standards Market trends for pumps and refrigerators Power source configuration Carbon prioring Increase In electricity consumption for air conditioning Carbon prioring Increase In electricity consumption for air conditioning Carbon prioring Prequency of typhoons and cyclones Frequency of typhoons and cyclones Heavy rain (globati) Frequency of occurrence	Parameters At present (r_2020) Parameters At present (r_2020) Carbon pricing Introduced in EU GHG emissions tangets Courty-specific goals Explorition to for pricing in the refrigerent product market Bases years 1 Expansion of the refrigerent product market Bases years 1 Torp runner motion standards Bases years 1 Power source configuration Starting point Power source configuration Starting point Increase in temperature Starting point Increase in itemperature Starting point Increase in electricity consumption for air conditioning Starting point Increase in electricity consumption for air conditioning Starting point Increase in electricity consumption for air conditioning Starting point Parameters At present Prequency of typhoons and cyclones Vortify typhoons and cyclones Prequency of openance Collegies 1 Heavy rain (global) Frequency of cocurrence Collegies 1	Parameters As of June 2024, there has been non-anges since the disclosure Are present (-2020) Are present (-2020) Parameters Are present (-2020) Introduction of cauton pricing Gd6 emissions targets Courty-specific goals Courty-specific goals Gd6 emissions targets Courty-specific goals Sight increase or decrease Explorition for for entrigerant Top runner motor standards Base year: 1 Sight increase or decrease Explorition for entrigerant Top runner motor standards Starting point Off anga-defined products accease and menable energy rulein tomases Demand for more efficient energy-related assets Base year: 1 Off anga-defined products accease and menable energy rulein tomases Increase in electricity consumption increased bare year: 1 Starting point Off anga-defined products accease and menable energy rulein increases and and menable energy rulein increases and and menable energy rulein increases and menable energy rulein increases and and menable energy rulein increased due to tomase in electricity consumption increased due to therease in electricity consumption increased due to therease in electricity consumption increased and tarter for Consumption increased due to therease in electricity consumption increased due to t	Name Al present (<2020) All (<2020) Carlos prioring Introduced in EU United introduction of carlos prioring Ser_SOUGRE (<2020)	

refers to IEA, IPCC, etc

When describing the worldview qualitatively, the company uniquely categorizes scenarios related to "policies," "customers," and "procurement" based on the company's business model, and describes them in detail in a narrative manner

(Excerpted partially)

Target Markets	Temperature Scenarios	Policy and Regulatory Scenarios	Customer Scenarios	Procurement Scenarios	New Entrants/Alternatives
Building and Industrial Equipment	4°C scenario	Limited regulatory activity - Limited implementation of carbon taxes, carbon border adjustment mechanism, and emissions trading. - Limited implementation of energy conservation promotion policies such as Zero Emission Building (ZEB). - Climate change adaptation-related grants/subsidies may be implemented. - Disaster countermeasures will be implemented. Disaster prevention and mitigation plans are reviewed.	The same level of demand continues - The impact of the introduction of a carbon tax is small. - Costs of end-user operations increase to combat rising temperatures. - Maintenance and replacement of damaged facilities are required.	Supply will continue at the same level as present - The impact on procurement costs is small. - Interruptions to supply due to damage caused by wildfires, cyclones, floods, etc.	- None
	1.5°C scenario	Regulations are strengthened - Carbon prices, carbon taxes, and emissions trading are introductuling - Subsidies for technologies contributing to energy conservation and renewable energy are implemented. - ZEB promotion policies are implemented. - New regulations and existing regulations are strengthened.	Demand for building and Industrial equipment with low environmental impact expands - Energy conservation regulations are strengthened, and energy-saving building equipment is being introduced and refitted - Installation of air conditioning equipment, pumps, and pump equipment corresponding to ZEB. - Increased installation and refitting of heating/cooling equipment using non-CFC refrigerants.	Raw material prices rise - Raw material prices increase due to the introduction of carbon taxes, tighter regulations, and an increase in electricity prices due to the shift to renewable energy.	- Alternative products may emerge.
Oil & Gas	4°C scenario	Limited regulatory activity - Limited implementation of carbon taxes, carbon border adjustment mechanism, and emissions trading. - Energy conservation promotion policies are ad hoc and not strict. - Climate change adaptation-related grants/subsidies may be established.	The same level of demand continues - The impact of the introduction of a carbon tax is small. - Petroleum refining and petrochemicals are maintained to a certain extent. - Considerable damage from wildfires, heavy rains, typhoons, hurricarnes, floods, etc., which requires service and support.	Supply will continue at the same level as present - The impact on procurement costs is small. - Interruptions to supply due to damage caused by wildfires, cyclones, floods, etc.	- None.
	1.5°C scenario	Regulations are strengthened - Carbon taxes and emissions trading are introduced. - New regulations are enacted and existing regulations are strengthened. - Implementation of subsidies/grants for technologies contributing to energy conservation and renewable energy production.	The oil and gas market evolves - Demand for oil refinery plants shrinks. - Demand for LNG as an energy source shrinks. - Demand for petrochemicals is maintained to a certain extent. - Demand for energy-saving and highly efficient products will increase. - Demand for hydrogen and ammonia refinery technologies for next-generation energy sources increases over the medium term.	Raw material prices rise - The introduction of a carbon tax increases the prices of steel and other raw materials.	- Alternative products may emerge.

Demonstrates resilience by scenario analysis results and is integrated with business strategy

✓ Based on the results of business impact evaluation, describes the results of considering countermeasures for risks and opportunities up to 2050

Building and I	ndustrial	Equipmen	Water Infrastructure Markets Term Length: Short: 2025 (Period of our medium-term management plan) / Medium: 2030 / Long: 2050
Target Markets	Temperatu	re scenarios	Assessment of Business Environment Term Countermeasures applicable for both scenarios (1.5°C and 4°C)
Building and industrial equipment	4°C scenario	Risk Opportunit y	 There are four major production bases for pumps, blowers, refrigerators, and cooling towers for the towers for the china, two in of up to apprivations, hurits, the decline in profits resulting from the decline in sales of conventional oil and gas-related products due to the evolution of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the scale of tens of billions of yen.
	1.5°C scenario	Risk Opportunit y	 We expect to 4^C scenario. We expect to 4^C scenario. We expect to 4^C scenario. We anticipate that our traditional customers' business field will evolve from the oil and gas market to a next-generation energy market, and we can expect to attract new customers. We reflect this in our business strategies, including products that respond to advances in CCUS/CCS and hydrogen/ammonia power generation technology, hydrogen production and storage technology, products for geothermal and solar power generation, and
Oil and gas	4°C scenario	Risk Opportunit y	We produce 1 Compressors for hydrogen liquefaction plants and hydrogen supply pipelines. locations in Japan, one in vorm America and two in Complexity 4-6 billion yen in the event. Detere it drawery an sites will sufer structowns due to extreme weather events at the same time. losses and lost profits of up to approximately 4-6 billion yen in the event. Detere it drawery an sites will sufer structowns due to extreme weather events at the same time. We expect the petrochemical market to continue expanding and related product sales to increase, while the oil and gas sector will trend down resulting in a decrease in related product sales. Medium to long Product sales. Medium to long We will take measures to strengthen the competitiveness of products for the chemical market.
oopjingingoj estatu	1.5°C scenario	Risk Opportunit y	 We believe that the decline in profix resulting from the decline in sales of conventional oil and gas-related products due to the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the section of the market can be sufficiently offset by taking the following measures, and we can also expect an increase in profits on the scale of tens of billions of yen. We will take measures to strengthen the competitiveness of products for the chemical market. We anticipate that suppliers may experience supply stops due to heavy rain, typhoons or hurricane damage. We anticipate that suppliers may experience supply stops due to heavy rain, typhoons or hurricane damage. In response to the transition to a hydrogen-based society, we launched a company-wide hydrogen-related business project in states of us over the medium to long term.

Example of Securities Report : Seiko Epson Corporation (Electricity, Machinery, Communication)

Future investment amounts and CAGR are quantitatively described as financial impacts, and efforts to strengthen resilience are disclosed

Category		Evaluated risks & Actualization		Business impacts	Financial impact	
		Paper demand	Short-term	Impact • We ver unable to detect a strong relationship between climate change and the change in paper demand, but demand for printing and communication paper is assumed to be on a decliming trend. Even if the shift to paperless advances further due to changes brought about by COVID-19 (such as the contraction of office printing because of decentralization), we expect only a limited financial impact from the strengthening of products and services based on inkjet technology and paper recycling technology (reduction of printing costs; reduction of environmental impacts, increase of ease of printing, appeal using usefulness of paper information).	Small	
Transition risks	Market changes Policy & laws and regulations	(Initiatives in Environmental Vision 2050) - Decarbonization - Cicceaer descue foop - Environmental technology development	Short-term	Impact • Decarbonization of products, services, and supply chains as well as advanced initiatives in resource recycling are needed to respond to the shared global societal issues of climate change and resource depletion. • Scientific and specific solutions are necessary to develop environmental impacts. Response to risks • Decarbonization • Renewable energy use • Greenhouse gas removal • Supplier engagement • Calosed resources effectively • Minimize production losse • Environmental technologies • Closed resources of environmental engagement • Carbon-tree logistics • Closed resources effectively • Minimize production losse • Environmental technologies (rece) materiatis • Naturally device (plastic-tece) materiatis • Atternative lengthst	Invest a total of aproximately ¥100.0 billion by 2030	
Physical risks	Acute	Damage to business sites due to floods Damage to business sites due to rising sea levels Impact on operations due to drought	Long-term (End of 21st century)	Impact • Based on the results of risk assessment for 36 sites (17 sites in Japan and 19 sites overseas), the changes in future operational risks due to flooding (rivers overflowing), high tides and water shortage are limited. • Short-term climate change risks to the supply chain will be addressed in line with our business continuity blans.	Small	
		(Initiatives in "Environment Vision 2050") - Customer environmental impact mitigation	Short-term	Assumed scenarios • The need for environmentally considerate products and services will increase due to the introduction of a carbon tax, soaring electricity prices, rising waste disposal costs, sustainable production volume, and reduced resource use. Business opportunities • In the growth areas defined in Epson 25 Renewed, we expect to grow revenue at a CASR (compound annual growth rate) of 15% by providing 1) inkjet office printing, commercial & industrial inkjet intring and printheads that reduce environmental impacts, increase work productivity, and reduce printing costs; and 2) production systems with expanded use of new production devices to reduce environmental impacts.	Large CAGR of 15% is expected in growth areas by FY2025	
Opportunities	Products and services	Environmental business	Short-term	Assumed scenarios Market growth is expected in the areas of global warming prevention, waste treatment, and effective utilization of resources. The shift to a circular economy is expected to drive market growth for recycled patistics, high-performance biomaterials, bioplastics and metal recycling. Business opportunities Generate reverue by value transformation (enhancing functionality), eliminating patients (applice), and molding materials), creating new high-value-added materials and carrying out other measures through the establishment of technologies, such as applications of dry fiber technology, including paper recycling, and recycling of raw materials (metal and paper recycling) as effective solutions for combatting global warming and shifting to a circular economy.	Medium	

Discloses the quantitative financial impact in the 1.5°C scenario as the amount invested in risk countermeasures and the impact on CAGR

Promoting environmental strategy meetings regularly to strengthen resilience

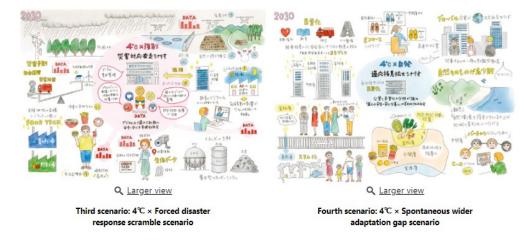
Strategy

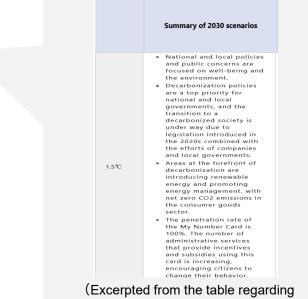
Epson has determined that achieving sustainability in a circular economy and advancing the frontiers of industry are material matters. To achieve these, we are reducing greenhouse gas (GHG) emissions by leveraging our efficient, compact, and precision technologies to drive innovation. We have been implementing activities at regular meetings of the Environmental Strategy Council and its subcommittees to realize our Environmental Vision 2050. In FY2023, we reviewed the status of implementation of activities and submitted deliberations and reports to various management meetings, focusing on the following initiatives.

Increasing resilience		FY2023 initiatives & results			
	Decarbonization	 Finalized the roadmap for reductions over the medium term toward Scope 1 zero emissions (upgrades of facilities and equipment for electronification and switching of fuels). Implemented sustainable and stable procurement of renewable energy and formulated a plan for inhouse power generation. Supplier engagement (surveys of suppliers' reduction plans and switching to renewable energy, etc.) 			
Environmental Strategy Council	Closed resource loop	 Started operating resource-loop indicators and targets to become underground-resource-free. Formulated business-specific/company-wide medium-term plans for utilizing compact, lightweight and recycled materials and switching to sustainable resources. 			
	Customer environmental impact mitigation	- Started calculation of objective and fair avoided emission for product genre that contributes to reducing the environmental impact of society.			
	Environmental technology development	 Materialized the topic of dry fiber technology application (developed packaging materials and cellulose composite bioplastics). Developed an elemental technology for practical application of a high-value-added technology for metal powders. 			

Domestic Disclosure Examples : NEC (Electricity, Machinery, Communication, 1/2)

Referring to multiple external scenarios and independently sets the scenarios into four quadrants. The outline of each scenario is also described narratively


- ✓ Scenarios are uniquely divided into two axes: "1.5°C" and "4°C", "forced" and "spontaneous", and illustrated in four quadrants
- The worldview is described in the narrative, and the external scenarios referenced are also clearly stated



Second scenario: 1.5°C × Forced

environmental supreme efficiency scenario

scenario overview)

Referenced Published Scenarios

1.5℃ Scenario	4°C Scenario
 IPCC AR6 WG I SSP1-1.9 IPCC 1.5°C Special Report IPCC AR5 RCP2.6 IEA World Energy Outlook 2021 Net Zero Emissions by 2050 Scenario (NZE) National Institute for Environmental Studies, Japan, Version SSP SSP1: Sustainable, SSPS: Reliance on Fossil Fuels 	 IPCC AR6 WG I SSP1-8.5 IPCC AR5 RCP8.5 IEA World Energy Outlook 2021 Stated Policies Scenario (STEPS) National Institute for Environmental Studies, Japan, Version SSP SSP3: Regional Divisions, SSP4: Disparities

Domestic Disclosure Examples : NEC (Electricity, Machinery, Communication, 2/2)

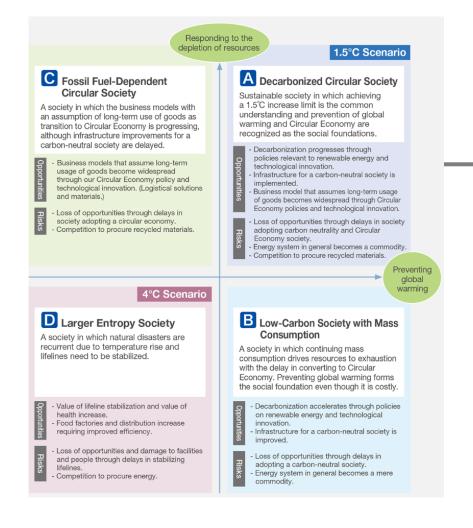
plan

Among the risks and opportunities assumed in the four types of scenarios, cost increase due to carbon pricing in 2030 is quantitatively evaluated as a particularly large risk

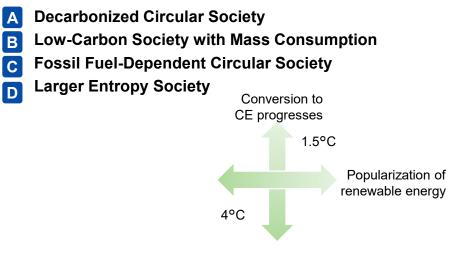
Quantitatively calculates and discloses the impact on business caused by risks due to carbon pricing
 Risks and opportunities that have a particularly large impact are reflected in the medium-term management

Risk Management (Including Opportunity Generation)

NEC identifies and classifies impacts arising from climate change as short-term, medium-term, and long-term risks and opportunities. Under the examination process, NEC evaluates the future impact of climate change based on scenarios after existing businesses are reorganized from a climate change perspective. At the same time, we confirm assets for addressing risks and taking advantage of opportunities. Major risks and opportunities are reflected in mid-term management plans.


Risks	Description	Risk Management and Countermeasures	
Transition risk	Risks from carbon pricing Assuming all of NEC's Scope 1 and Scope 2 emissions (about 164,000 t - CO ₂) upon achievement of new targets in fiscal 2031 toward net zero CO ₂ emissions by 2040 ar e subject to carbon pricing (130 U.S. dollar/t-CO ₂), costs will increase by 2.8 billion yen (assuming 130 yen/1 U.S. dollar) Assuming impact from higher costs in upstream and downstream supply chains	Increase use of renewable energy and achieve thorough gains in efficiency to achieve net zero CO ₂ emissions target by 2040 (ongoing efforts in supplier engagement and to improve energy saving performance of products)	
Physical risk	Possible disruption of supply chains due t o weather-related disasters (floods, landslides, water shortages, etc.), long-term outages of lifelines such as electricity, gas, and water	Risk assessment of the entire supply chain, BCP measures (installing flood gates and moving power supply equipment) with provisions for weather-related disasters, such as river flooding, and strengthening of power generation in data centers	

- "Scope 1,2 emissions when achieving SBT in 2030 (approximately 164,000 tons)" x "carbon price (\$130/tCO2)" = cost increase equivalent to 2.8 billion yen is assumed
- Recognizing increased costs upstream and downstream of the supply chain will have a financial impact on our business
- (Reference) Introducing internal carbon pricing to improve energy efficiency and introduce low-carbon equipment


Introduction of Internal Carbon Pricing

With the aim of improving energy efficiency and promoting the introduction of low-carbon facilities and equipment, we have set internal carbon pricing. This pricing allows us to convert the CO_2 emission reductions that would result from a given capital investment into a monetary value, which we can then use as a reference when making investment decisions. The aforementioned carbon pricing mechanism will drive our decarbonization activities going forward and reduce the risk associated with potential increases in carbon taxes and emissions trading in a carbon-free society of the future. NEC has set its internal carbon price at 3,000 yen/t- CO_2 . Domestic Disclosure Examples : Panasonic Group (Electricity, Machinery, Communication, 1/2)

Defines in total of four scenarios, including 1.5°C scenario based on the IEA's NZE. In the 1.5°C view, it considers the impact from increasing the ZEV ratio and expanding CO2-free fuels and such to the company

It has defined four scenarios including 1.5°C, and has set its own world view for 2030 for each scenario

 Regarding the world view of each scenario, the impact on industry and changes in customer value are described

A Decarbonized Circular Society

Impact on industries

Concurrent progress of legislation and technological innovation related to preventing global warming and creating a circular economy help to form a related infrastructure for a carbonneutral society and Circular Economy. This encourages investment in decarbonization <u>in automotive and real estate industries</u>, and advances the shift to business models that assume long-term use of goods in industries involved in the supply chain. It is also expected that not only products but also the construction of sustainable towns designed for carbon neutrality and Circular Economy will attract investment.

Changes in customer value

Consumers: Eco-consciousness, cost reduction, ethical, on-demand usage, etc. Corporations: Eco-consciousness, cost reduction (energy saving, asset-light approach, better fuel efficiency, etc.), effect and efficiency enhancement (maximization of customer value, i.e. better experience value, etc.).

(Partially excerpted from the table on the left)

Domestic Disclosure Examples : Panasonic Group (Electricity, Machinery, Communication, 2/2)

The group's seven operating companies formulated climate change strategies and disclosed some of their measures. The company is possible to respond to any of the four scenarios, demonstrating the resilience of the business

Formulated climate change strategies for seven operating companies based on the results of each scenario analysis Decarbonized Circul

of each scenario analysis	1. Panasonic Corporation Sales for fiscal 2024: 3,494.4 billion yen A Decarbonized Circular Society B Low-Carbon Society with Mass Consumption C Fossil Fuel-Dependent Circular Society
We can address the risks and opportunities corresponding to the above scenarios through any of our seven	1-1 Living Appliances and Solutions Comp D Larger Entropy Society
nain operating companies shown below.	Build a circular value chain with customers anough produced and services.
1. Panasonic Corporation	Achieve extension of the product life cycle and improve customer engagement looking ahead of circular economy.
(Home appliance business, Air quality and air conditioning business, Food distribution business,	1-2 Heating & Ventilation A/C Company
Smart Energy System business, Electrical facility materials business)	
2. Panasonic Automotive Systems Co., Ltd.	 Provide the optimum and highest air and water quality values with low environmental impact, not found in conventional air conditioning, with a A B C D
3. Panasonic Connect Co., Ltd.	combination of our unique air and water technologies.
4. Panasonic Energy Co., Ltd.	Create unprecedented value with water and air heating systems with heat
5. Panasonic Industry Co., Ltd.	pump (A2W), chillers, and combination of air quality and air conditioning in the air conditioning business of water circulation type to contribute to
6. Panasonic Entertainment & Communication Co., Ltd.	improvement for decarbonization and air quality values.
7. Panasonic Housing Solutions Co., Ltd.	1-3 Cold Chain Solutions Company
	 Promote energy conservation offering comprehensive support for our energy monitoring system covering from system installation to operations and maintenance. Our equipment refurbishing service prolongs system usage while contributing to a circular economy.
	Accelerate development of natural refrigerants with lower environmental impact through wider use of CO ₂ refrigeration equipment.
	1-4 Electric Works Company
	Provide a sustainable and safe and secure facility infrastructure based on our wiring fixtures to contribute to electrification and disaster-resilient society with A B C D zero environmental impact in the world.
	1-5 Direct Control (Hydrogen Related Businesses)
✓ Stated that resilience was verified in all four	Achieve local production for local consumption of energy by developing a decentralized energy package business utilizing hydrogen.
SCENARIOS The scenario analysis found that either of the businesse any of the 4 scenarios of the societies is achieved. In oth	her words, the analysis successfully verified the

resilience of our business strategies. The analysis also helped us understand that we can contribute to building a sustainable society through our businesses. We continue our efforts to build the 1.5°C world, represented by our society (A).

Source : Panasonic Group, Strategic Resilience through Scenario Analysis, https://holdings.panasonic/global/corporate/sustainability/environment/tcfd/resilience.html (As of January 2025)

Appendix 1-54

Domestic Disclosure Examples : Kao Group (Consumer Discretionary, Pharmaceutical or Food)

s/

ur

d

Regarding scenario analysis, it provides an overview of the estimation method and describes the magnitude of the financial impact in stages.

- Financial impact based on scenario analysis is expressed by the number of symbols (+, -) for each risk item in terms of magnitude
- ✓ Also describes the method of calculating the business impact, which is the basis of calculation

We evaluated the business impacts in relation to

Estimation of business impacts by 2030

We estimate that CO_2 emissions (scope 1 + 2) in 2030 will increase by 67% compared to 2017 unless we take

- any m ton-C(An overview of the
- ^{CO₂ e} calculation method for
- assum business impact
- around estimation
- to take

What Kao Aims to Be by 2030 by four product groups. More specifically, we set baseline Profit and Loss (P&L) data for 2030 on the assumption that our company's sales would reach 2.5 trillion yen by 2030 (1.67 times as high as in 2018), and that P&L would grow proportionately compared to 2018. Business impacts were estimated on the basis of this baseline P&L. In order to compare the respective impact of individual factors on our business based on different climate

change scenarios, we performed an evaluation for both the 1.5°C scenario⁻² and 4°C scenario⁻³. For this reason, evaluation was not performed for some factors even though there was the potential for them to have a significant impact. There were also some factors which might have a major impact by 2050, but which will have only a relatively small impact by 2030.

*1 As it is assumed that new equipment adopted in the future will still be in use after 2030, we have estimated the likely carbon tax rate in 2035 based on the IEAs World Energy Outook 2021, and changed the base currency from Japanese yen to U.S. dollars from February 2023. *2 1.5°C, senario

21-3 exclusion This is equivalent to the IEA's NZE 2050 Scenario, 2DS Scenario, IPCC's RCP 1.9 scenario or SSP1-13 scenario, etc. It refers to the economic measures that would be needed in order to keep the average global temperature rise down to less than 1.5°C compared to the situation prior to the Industrial Revolution, and to the environmental damage that is expected to result from such a rise in temperature. 34°C scenario

This is equivalent to the IEA's Current Policy Scenario, IPCC's RCP 8.5 scenario or SSP5-8.5 scenario, etc. It refers to the economic measures that would be needed in order to keep the average global temperature rise down to less than 4°C compared to the situation prior to the Industrial Revolution, and to the environmental damage that is expected to result from such a rise in temperature.

Decarbonization	scenario	analy	vsis
Decourbonneation	Jochano	unun	0.0

		Evaluation items	Evaluated financial impact	Impact of climate-related risks and opportunities, and financial planning, for 2030 (+ indicates a positive impact, - indicates a negative impact, ND indicates no impact, and numbers indicate the size of the impact)		the large HIP had a set of a set of the her had been been been been been been been bee		Kao's response status	
				1.5°C scenario*1		4°C scenario			
		Introduction and/or raising of carbon tax	Increased operating costs due to introduction and/or raising of carbon tax	Increased operating costs due to introduction of new taxes and/or raising of tax rates		New carbon taxes are not introduced, and tax rates are not raised	ND	Scope 1+2 emissions reduction targets are set, and emissions reduction activities continue	
	Policies, laws and regulations	Introduction of restrictions on	Taxation of fossil-derived raw materials for packaging	Increased procurement costs due to introduction of new taxes	-	New taxes are not introduced	ND	Public announcement of an Innovation in Reduction implementation strategy Annual adoption targets are set for innovative film packaging, and activities to reduce plastics usage continue	
		plastics	Increased costs due to use of recycled plastic becoming compulsory	Increased procurement costs due to a rise in the unit price of recycled plastic resulting from the use of recycled plastic becoming compulsory	-	The use of recycled plastic is not made compulsory	ND	Public announcement of an Innovation in Recycling implementation strategy Expanded adoption of packaging made from recycled plastic	
Transitional		Rising energy prices	Volatile electricity retail price	Increased costs due to a rise in the electricity retail price		Reduced costs due to a fall in the electricity retail price	+	Setting of energy use reduction targets, and proactive installation of solar panels to generate electricity for own use	
tional			Rising prices for fossil-derived raw materials	Increased procurement costs due to rising crude oil prices		Increased procurement costs due to rising crude oil prices		Continuing activities to reduce usage of fossil-derived raw materials in product groups that utilize such raw materials	
		Rising raw materials prices		Rising prices for procurement of palm oil	Increased procurement costs due to supply shortages resulting from tighter restrictions on forest development	-	Unchanged costs due to increased supply resulting from the development of new plantations	ND	Promotion of the development of substitute raw materials (such as algae-derived fats and oils, and unused biomass), and commencement of use
			Rising prices for procurement of pulp	Costs remain unchanged because, although forests fires increase, there is no shortage of supply	ND	Costs remain unchanged because, although forests fires increase, there is no shortage of supply	ND	_	
		Changes in consumers' behavior	Increased sales of ethical products	Sales increase because of increased demand for ethical products on the part of the generation that will be the main purchasers of Kao products in 2030	+ +	Sales increase because of increased demand for ethical products on the part of the generation that will be the main purchasers of Kao products in 2030	+ +	Inviting Ms. Rika Sueyoshi, CEO of the Ethical Association, to become a member of Kao's ESG External Advisory Board Development and provision of ethical products	
	Acute	Intensification of abnormal weather conditions	Increased damage from flooding	Increased risk of flooding, but difficulty in accurately predicting the amount of damage	-	Increased risk of flooding, but difficulty in accurately predicting the amount of damage	-	BCP adjustment Implementation of supplier water risk surveys	
Physical	Chronic	Rising average temperatures	Increased sales of sunscreen and antiperspirant products Increased sales of products against infectious diseases	Increased sales in regions and seasons with higher temperatures	+	Sales increase due to more expansion of regions and seasons with higher temperatures	+	Production planning adjustment Development and launch of products against infectious diseases	
		Demand for water outstripping supply	Rising operating costs due to increased water use charges	Rising operating costs at plants operating in regions with water shortages		Rising operating costs at plants operating in regions with water shortages		Setting of water use reduction targets, and continued implementation of water use reduction activities	

*1 Kao's assessment based on scenario analysis using the 2°C scenario

Domestic Disclosure Examples : Shiseido (Consumer Discretionary, Pharmaceutical or Food)

The analysis results are disclosed quantitatively while clearly indicating calculation method. Analysis show resilience and its integration with the strategy

- Clarifying the calculation method when analyzing quantitative financial impact
- Regarding the risk of an increase in raw material costs listed below, it is stated that a quantitative financial impact analysis will be carried out for material crops that are likely to have a large impact on business in the future

Procurement impact = $A_{2030} * P_{2030AVE} * \sigma * R_{AW}$

A₂₀₃₀: Expected procurement amount in 2030 P_{2030AVE}: Expected average price in 2030 σ : Standard deviation of the percentage change in

price relative to the moving average

R_{AW}: Percentage of price upswing by extreme weather events

As a result, we estimated that the potential cost increase as of 2030 would be about 140 million yen per vear due to climate impacts under the 1.5/2° C scenario and about 290 million yen under the 4° C scenario. In addition to promoting the procurement of sustainable palm oil, with regard to material crops other than oil palm, we should also be aware of the possibility that material demand might lead to higher procurement costs in the future, as well as the possibility that procurement itself might become impossible because of climate change. We will continue to analyze the financial impact and implement measures to avoid or mitigate risks, such as changing materials and diversifying production areas.

(Regarding the risk of increased raw material costs due to rainfall and weather changes are partially excerpted)

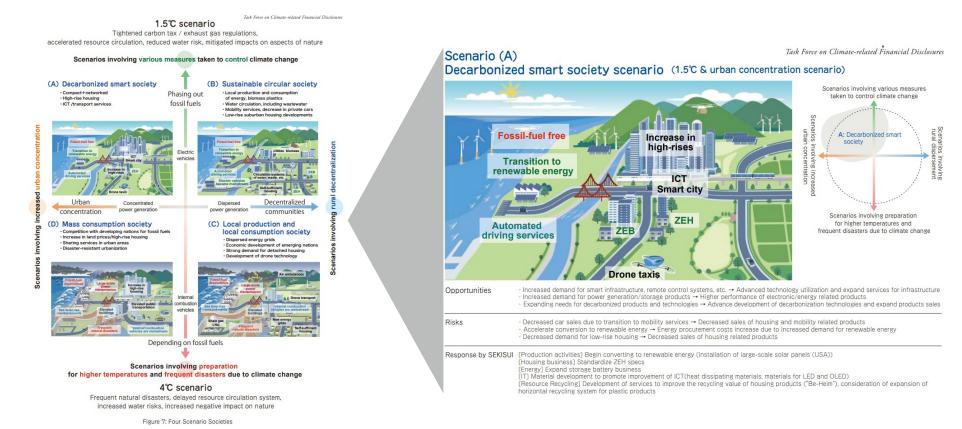
As a countermeasure, transition plans are made for GHG emissions and renewable energy, Raw material procurement, Saving water, and product development, Disclosure

1. GHG emissions and renewable energy

neutralization. We also set the science-based target of 46.2% reduction for Scope 1 and Scope 2 GHG emissions, and 55% reduction by 2030 in terms of economic intensity along the 1.5° C trajectory as the mid-term targets.

Shiseido aims to reduce GHG emissions throughout the value chain by working with our suppliers and other stakeholders on introducing renewable energy into our supply chain, preventing deforestation related to raw material production, and developing and implementing new social models for the efficient collection and recycling of a wider range of materials, as well as our own efforts for selecting raw materials based on green chemistry principles, replacing with plant-derived materials, reducing packaging weight by expanding refilling and design optimization, making packaging recyclable, reducing energy consumption, and expanding renewable energy at our sites. 4. Product development

As the transition to a decarbonized society, consumer awareness of climate and environmental issues is expected to increase more than ever. Responding flexibly to these changes in consumer awareness is critical to the sustainability of our business. We aim to replace all plastic cosmetics packaging with reusable, recyclable, or biodegradable materials by 2025. Shiseido developed and provided a variety of solutions for packaging since the launch of the first refillable face powder in 1926. Shiseido declares that it will optimize packaging design, select appropriate materials, and implement the concept of global reuse by refillable and replaceable products for consumers. In addition to these efforts, we will also work to reduce GHG emissions through innovation for a sustainable future by developing new materials using algae and new chemical recycling methods that can regenerate various types of plastic.


Example of a product development transition plan:

- By 2025, switch all plastic cosmetic packaging to reusable, recyclable or biodegradable sustainable packaging
- Improve the suitability of container recycling, save input resources, and encourage circular use

Domestic Disclosure Examples : SEKISUI CHEMICAL (Consumer Discretionary, Pharmaceutical or Food, 1/3)

By setting four axes, the disclosure establishes company's own view on other environmental issues

- Establishing a unique worldview based on the UN's IPCC (Intergovernmental Panel on Climate Change) Fifth and Sixth Assessment Reports
- ✓ Based on the 1.5°C/4°C scenario, uniquely developed two axes: "Climate change mitigation progresses/does not progress" and "Social systems disperse to rural areas/Concentrate in large cities"
- ✓ Furthermore, four climate change scenarios are assumed, taking into consideration the mutual influence that other environmental issues with climate change issues

Source : SEKISUI CHEMICAL, TCFD/TNFD Report 2024 Task Force on Climate-related Financial Disclosures Task Force on Nature-related Financial Disclosures, https://www.sekisuichemical.com/sustainability_report/pdf/2024_TCFD_TNFDReport_E.pdf (As of January 2025)

Domestic Disclosure Examples : SEKISUI CHEMICAL (Consumer Discretionary, Pharmaceutical or Food, 2/3)

Discloses financial impact on business as an image of corporate value in the product life cycle

✓ Analyzes financial impact during product life cycle

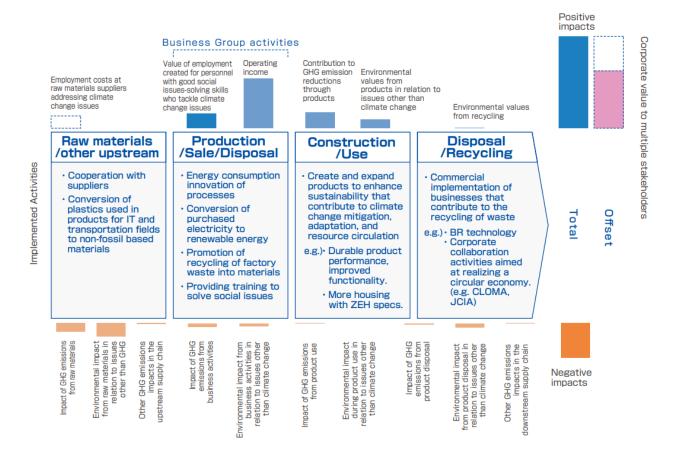


Figure 10 (b): Details of Positive and Negative Impacts on Corporate Value Over the Life Cycle of Products Using Impact-weighted Accounting Methods

Source : SEKISUI CHEMICAL, TCFD/TNFD Report 2024 Task Force on Climate-related Financial Disclosures Task Force on Nature-related Financial Disclosures, https://www.sekisuichemical.com/sustainability_report/pdf/2024_TCFD_TNFDReport_E.pdf (As of January 2025)

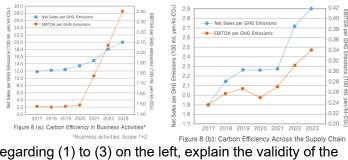
Domestic Disclosure Examples : SEKISUI CHEMICAL (Consumer Discretionary, Pharmaceutical or Food, 3/3)

Measures as a result of scenario analysis are integrated with business strategy through long-term business and financial planning

- As a result of analyzing (1) Monitoring carbon efficiency (environmental performance), (2) Correlation between carbon efficiency and economic performance, (3) Stakeholders' comprehensive income using
- impact-weighted accounting methodology, strategies to address climate change issues are confirmed as appropriate and demonstrates its business resilience
- ✓ Verify and review the validity of strategies in each scenario and reflect them in management plans

4-3. Validation of Climate Change Strategies

The following verification were conducted to


confirm the validity of our strategy in response to climate change issues.

(1) Monitoring carbon efficiency (environmental performance)

(2) Correlation between carbon efficiency (environmental performance) and economic performance

(3) Stakeholders' comprehensive income using impact-weighed accounting methodology

(factoring in the impact on resource circulation and biodiversity)

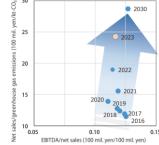


Figure 9. Correlation between Carbon Efficiency (Environmental Performance) and Economic Efficiency of Business Activities

Regarding (1) to (3) on the left, explain the validity of the strategy using multiple graphs.

Scenario analysis

SEKISUI CHEMICAL Group conducted scenario analyses to identify potential risks and opportunities that could arise from climate change, and it was confirmed that strategies to reduce risks or to convert risks into opportunities are in place for all scenarios assumed. The scenario analyses also reaffirmed the effectiveness of the strategies as a solution to the issues related to climate change.

Based on the 1.5°C scenario and the 4°C scenario, two axes were set: one axis is whether climate change mitigation progresses or not, and the other axis is the decentralization of social systems in rural areas or concentration in large cities. Furthermore, mutual impacts of other environmental issues with climate change issues were taken into account, and four climate change scenarios were assumed.

Recognizing that environmental issues such as resource circulation, water risk, and biodiversity are related to climate change issues, measures from a broader perspective were reaffirmed. Strategies to re-establish milestones and accelerate efforts to realize a decarbonized economy were reviewed in each scenario, while verifying the validity of these strategies. Domestic Disclosure Examples : Nichirei Group (Consumer Discretionary, Pharmaceutical or Food, 1/3)

In FY2023, scenario analysis on shrimp procurement was conducted, and continuing from FY2021 and FY2022, efforts to improve the sophistication of scenario analysis are recognized

- Conducting scenario analysis from 2019. In FY2021, risks and opportunities by business and highimportance scenario were identified, and in business impact assessment, "water risk due to abnormal weather" as a risk common to multiple businesses were selected and formulated climate change scenarios
- In FY2022, the risks and opportunities that climate change poses to rice and chicken procurement were selected and formulated climate change scenarios
- ✓ In FY2023, the risks and opportunities that climate change poses to shrimp procurement was considered, and an increase in the sophistication of scenario analysis is recognized

(1) Risk of Futur	e River Flooding	(2) Risk of Future Rising S	Sea Levels (Tidal Flooding)	
The location oftention is the scale of reliaful assumed on even it in fooding according to the hazard maps of municipalities in the region where the tholly is located. The assessment is conducted based on predicted rainfall amounts.	When creating hazard maps for regions where the facilities are located, <u>three facilities in Jacon</u> were found in locations where	For facilities in areas with either no risk or univenous risk of flooding according to the municipal hazard map of the region where they are located, an assessment was conducted or the risk of flooding assuming the occurrence of a hyphonon on the scale of the las Bay Typhonon, role the most destructule hyphonon in the scale of the las Bay Typhonon, role where the most destructule hyphonon in Aspanse history, and future rising as a loweling test at 1 metro by the Japan Methocicogical Agency in Climate Charge in Agency in Schward Entry and Agency in	29 of the 140[facilities were in food areas according to municipal hazard maps. • A facilities overseas • Based on an les Bay Typhon-scale hyphon and ring as heeks, a	
21 facilities in Japan 8 plants and 13 retrigerated warehouses)	the number of rainfall events exceeding the anticipated maximum rainfall amount was expected to be around the same as the current number of	145 facilities in Japan 1 facility overseas	 simple calculation was performed for the facilities outside of flood areas according to municipal hazard maps or in areas for which hazard maps had not been prepared (108 facilities). 	
Facilities located in regions where hazard maps have been prepared in Cool factories with large production volume Refrigerated warehouses (statistication contrar) in areas with high base food elevation according to current hazard maps Belected to avoid overropresentation of certain resions	aintal events or potentially higher in the future.	 All tacilities in Japan, and facilities where significant financial risk and distance from the coast were considered (Thailand: Chicken production facility) 	As a result, <u>27 facilities</u> were found to be in fload reserving man levels were not considered, and <u>32</u> when rating as levels associated with climate change were considered.	

n 2021, water risk impact assessment was conducted

In FY2023, the risks and opportunities that climate change poses to shrimp procurement was considered and analyzed future yield projections for each climate scenario (details on the next page)

In FY2021, we conducted scenario analyses that identified risks and opportunities by business and degree of importance. One scenario analysis was for shrimp procurement in FY2024.

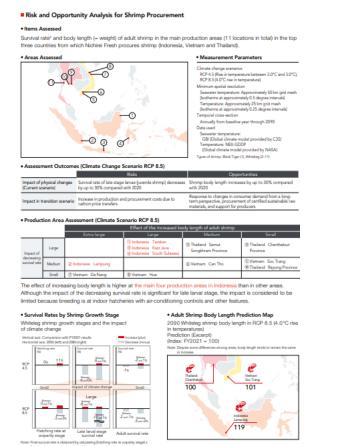
Material Risks and Opportunities by Business and Scenarios Identified in FY2021

	Business			Risks		
	Chicken			Soaring prices due to shrinking agricultural production Deterioration in the quality of raw materials		
	Rice	Baseline scenario	General abnormal weather	Difficulty in obtaining raw materials and production delays due to logistics network disruptions		
	Shrimp			Reductions in production efficiency and volume and submerged aquafarms		
Foods Business	Vegetables, marine products, and meat and poultry products		Flooding, rising sea levels	Submerged agriculture farms, aquafarms and processing factories Difficulty in obtaining raw materials and production delays due to supply chain disruptions		
	Common	rmon 1.5°C scenario	Low-carbon policies	 Increased cost for measures for converting to renewable energy and equipment electrification, reduction of emissions 		
			Environmental countermeasures within the supply chain	Curtailment of transactions; higher cost of measures such as the maintenance of global certifications		
	Logistics Business		eline General abnormal weather	Damage to refrigerated warehouses and logistics centers		
			scenario		General abnormal weather	Difficulty securing human resources in disaster risk areas
			Low-carbon policies	 Increase of investment in natural refrigerants and opportunity loss caused by the slow adoption of technological platforms such as electrical and low-carbon vehicles 		

In 2022, an impact assessment of rice and chicken procurement was conducted

Rice and Chicken Procurement Risks and Opportunities

We examined the risks and opplortunities created by climate change in relation to the procurement of rice and chicken, using the "Introduction to Information Disclosure on Climate-related Risks and Opportunities for Food, Agriculture, Forestry and Fisheries" issued by the Ministry of Agriculture, Forestry and Fisheries; and the Representative Concentration Pathway (RCP) scenarios described in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The analysis showed that, in terms of transition risks (risks related to transitioning to a low-carbon economy), both rice and chicken would be impacted by increasing costs associated with the introduction of a carbon tax and low-carbon production methods.


For physical risks (risks related to the physical impact of climate change), we conducted the following investigation to clarify how a temperature rise would affect our suppliers in terms of the impact on production volume.

Source : Nichirei Group, Integrated Report 2023, https://www.nichirei.co.jp/sites/default/files/inline-images/english/ir/integrated/pdf/nichirei_IntegratedReport2023_all.pdf (As of January 2025)

Domestic Disclosure Examples : Nichirei Group (Consumer Discretionary, Pharmaceutical or Food, 2/3)

By quantitatively grasping the financial impact through analysis of yields over multiple years, ensuring resilience in transition scenarios related to raw materials are described

- ✓ Using IPCC's RCP scenarios (4.5, 8.5), the simulation of the main sources of shrimp until 2090 was conducted and quantitatively analyzed future survival rates and body length predictions for multiple years
- By developing suppliers and thoroughly managing habitats and such, the company describes that "over the medium to long term, we expect that we will be able to effectively deliver social value by maintaining stable distribution of protein-rich shrimp" which indicates resilience of business

Financial Impact

We expect the financial impact on the shrimp business to include higher purchasing costs resulting from higher supplier costs, and various issues arising from market distribution of higher-priced products. Over the medium to long term, we expect that we will be able to effectively deliver social value by maintaining stable distribution of protein-rich shrimp.

Phenomena Confirmed	Assumed Financial Impact on Suppliers	Assumed Financial Impact on Nichirei	Measures to Address Financial Impact 1	Measures to Address Financial Impact 2	
Decrease in late stage larvae survival rate	Decrease in final survival rate • Higher shipping costs • Higher energy costs due to increased use of air conditioning Reduced profit margins	Higher purchasing costs Current profit margin to slightly lower profit margin	Develop new supplier relationships (Consider suppliers with little exposure to the impact of higher temperatures)	 Plant and strictly manage mangrove forests, which are a critical shrimp habitat Cooperate financially 	
Increase in adult shrimp body length	Shorter breeding period • Reduced cultivation costs • Increased production capacity for high- margin products Increased profit margins	Impact of purchase costs	Base response on market trend toward price increases for lower-priced products Control costs with seasoning processing technology Create new product categories (For example, develop higher-priced products in sizes that do not currently exist)	with producers to offset the increased administrative expense component of annual purchasing costs	

We expect the financial impact on the shrimp business to include higher purchasing costs resulting from higher supplier costs, and various issues arising from market distribution of higher-priced products. **Over the medium to long term, we expect that we will be able to effectively deliver social value by maintaining stable distribution of protein-rich shrimp.**

Source : Nichirei Group, Integrated Report 2023, https://www.nichirei.co.jp/sites/default/files/inline-images/english/ir/integrated/pdf/nichirei_IntegratedReport2023_all.pdf (As of January 2025)

Domestic Disclosure Examples : Nichirei Group (Consumer Discretionary, Pharmaceutical or Food, 3/3)

In FY2024, scenario analysis on carbon pricing was conducted, and continuing from FY2021 and FY2023, efforts to improve the sophistication of scenario analysis are recognized

- As part of the first phase of transition risk assessment, the company has used the IEA's WEO2023 and ETP2023 scenarios to estimate the financial impact of introducing carbon pricing and fluctuations in energy procurement prices for the years 2030 and 2050.
- As a countermeasure, the company has specified the transition to renewable energy, including the utilization of solar power generation and the expansion of corporate PPA adoption.

Financial Impact Calculation Results

Risk Assessment Overview

Target fiscal years	FY2031 and FY2051							
	Phase 1	Phase 2						
Risk type	Transition risk	Physical risk						
Reference scenario	IEA WEO2023 and ETP2023	IPCC AR5						
Assessment items	Carbon and energy pricing regulations	Flooding and high tides Drought Water stress Rising temperatures (Raw materials)						

"In the first phase (during FY2025), we reevaluated our scenario analyses and financial impact assessments for transition risks associated with carbon and energy price regulations, referring to FY2021 scenario analyses that identified risks and opportunities by degree of importance. **During the second phase, we will also reevaluate physical risks and disclose the results as they become available**."

Risk type	Business risk	Financial impact	
Transition risk	Impact of the introduction of carbon pricing and fluctuations in prices of energy procured	Negative impact of ¥5.0 billion (FY2031 Scope 1 and 2) Positive impact of ¥700 million (FY2051 Scope 1 and 2)	
Calculation Parameters Electricity ar Carbon price	Agency for Natural Resources and Energy, "Simplified Ca "Standard Calorific Value and Carbon Ervission Coefficie World Bank, State and Trends of Carbon Pricing 2023 GX League Secretariat, Rules for the First Phase of GX-Ei		
Reference Scenario IEA WEO2023 • ETP2023			

We did not identify any new opportunities in reevaluating our scenario analyses. However, we did estimate the financial impact from the transition risk associated with the introduction of carbon pricing and fluctuations in prices of energy procured to be negative ¥5.0 billion for FY2031 and positive ¥700 million for FY2051.

Based on these results, we will reduce CO₂ emissions by shifting to renewable energy in ways such as using solar power generation and expanding the use of corporate PPAs.

Source : Nichirei Group, Integrated Report 2024, https://www.nichirei.co.jp/sites/default/files/inline-images/english/ir/integrated/pdf/nichirei_IntegratedReport2024_all.pdf (As of January 2025)

Example of Securities Report : Members Co., Ltd. (Service)

Financial impact is analyzed and disclosed in four stages. The basis for calculation is provided in the increase in the procurement cost of environmental value certificates for electricity, which was analyzed to have a particularly large impact

(2)戦略

当社はTCFD提言に基づき、全社を対象として気候変動リスク・機会による事業インパクト、対応策の検討に向けた シナリオ分析を行い、1.5℃~2℃及び4℃の気温上昇時の世界を想定し、2020年度より将来までの間に事業に影響 を及ぼす可能性がある気候関連のリスクと機会の重要性を評価しました。

その結果、<u>リスクとしては、電力価格の上昇に伴う環境価値証書価格の大幅拡大が懸念され、価格影響額を試算し</u> た結果、以下のとおりコスト上昇の可能性があることがわかりました。

(2020年実績、2030年見込み)

リスク	1.5℃~2℃ 財務インパクト	計算式				
環境価値証書価格 約1億円のコスト 1tC02あたりのJクレジット価格×調達量(※1)(※2						
※ 1 Jクレジット価格の推移データを参考に、1.5℃~2℃では2020年10月の日本政府の脱炭素宣言~現在まで						
のJクレジット価格の推移率を使用し、2030年のJクレジットの価格を算出。						
※2 事業拡大に伴う増加分も加味。						

(the risk below is an example)

緊急性の 物理リスク (1)台風や洪水などの異常気象の重大性と 頻度の上昇 (2)山火事の可能性と重大性の上昇 (1)台風や洪水などの異常気象の重大性と 頻度の上昇 (2)山火事の可能性と重大性の上昇 (1)台風や洪水などの異常気象の重大性と 類定の上昇 (2)山火事の可能性と重大性の上昇 (1)台風や洪水などの異常気象の重大性と 現合、当社に中規模のリスクが考えられ ます。 また、自然災害時の従業員の安否確認や 事業所等の災害対応、また保険料の上昇 により当社へコスト増加の影響が考えられます。 (2)当社のオフィスは山間部から離れてい るため、関連するリスクへの影響はない 皆の判断を行いました。 (1)災害発生時の対応計画策定、 浸水対策	区分	想定される事象	当社へのリスク	対策
		(1)台風や洪水などの異常気象の重大性と 頻度の上昇	(1)当社の事業所のハザードマップの状況 等から、長期間におよぶ事業所の浸水等 のリスクは低いと考えられますが、豪 雨、洪水により事務所・発電所や従業員 が影響を受け業務遂行に支障をきたした 場合、当社に中規模のリスクが考えられ ます。 また、自然災害時の従業員の安否確認や 事業所等の災害対応、また保険料の上昇 により当社へコスト増加の影響が考えら れます。 (2)当社のオフィスは山間部から離れてい るため、関連するリスクへの影響はない	(1)災害発生時の対応計画策定、

 Discloses quantitative impact of "environmental value certificate price" among transition risks

STEP3. Identify and define STEP4. Evaluate business

impacts

- Calculation basis is stated in the notes
 "JCI price per 1t-CO2 (2030 forecast) x
 procurement amount (increase due to
 business expansion is also taken into
 account")
- For climate change risk/opportunity categories other than those listed above, the financial impact is categorized into "small, medium, large, and severe." The size of the amount is also described

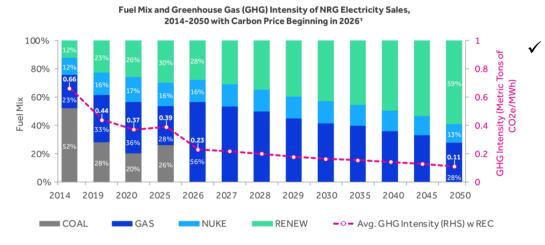
Quantitative impact is disclosed regarding carbon tax risk with relatively high certainty of monetary basis, referring to 1.5°C/4°C scenario (SSP1-1.9, SSP5-8.5)

b. Key Risks Relating to Climate Change

The key risks identified through the Company's scenario analysis, their likelihood and their financial impacts are shown below. The financial impact is calculated for each item but only the figures for carbon taxes are shown here as they are considered relatively definitive. " \mathcal{I} " indicates that the likelihood of occurrence is expected to increase toward FY2030, and " \rightarrow " indicates that the likelihood of occurrence does not change significantly.

	Key Climate Change Risks	Likelihood	Financial Impact	Risk Mitigation Measures	and 2 GHG emissions (a year ending March 2022 (\$300/tCO2)"			
	Increase in price of carbon 1 credits to achieve carbon neutrality	o achieve carbon High ⁺ High energy efficiency in offices and switching to renewable energy, promoting remote work,						
	2 Introduction of carbon taxes and possible increase in price	High⊅	Low (approx. 400M yen ¹)	involving in public policy ² , and engaging with partners in key value chains to achieve carbon neutrality throughout the Company's business activities and value chains by FY2030. Begin monitoring flood or damage risks of areas	(Disclosing quantitative			
	3 Submerged/damaged servers	impact)						
-	Scenarios for central banks and	y \$300/t-CO2 supervisors pr	(Ref. 2023 ver ovided by Intern	rsion, Net Zero 2050 scenario of the NGFS Climate ational Institute for Applied Systems Analysis)				
	The Company's GHG emissions assumption that there is no chan Recruit Group evaluates the fea	(Disclosing calculation basis)						
	والمراجعات وبالمرب والمراجع والمراجع والمراجع والمراجع	the second state and	the set the state of the set of t	and the second condition of the second second condition of the second second second second second second second				

Recruit Group evaluates the feasibility of all climate-related engagement activities (including partnerships with stakeholders in the value chain, the consideration of trade association memberships, public policy engagement and other related activities) in line with the Paris Agreement and our goals on environmental strategy, which are then approved by the responsible Senior Vice President for execution.


This analysis did not identify any physical or transition risks with significant impacts on the Company's business strategies. Nonetheless, under the governance structure described above, we will continue to closely monitor and reassess the impact of climate change on our group as well as enhance our disclosures of relevant information.

Among transition risks, disclosing the quantitative impact of "Introduction of carbon taxes and possible increase in price"

 Calculation basis is stated in the notes "Scope 1 and 2 GHG emissions (actual results for the fiscal year ending March 2022) x Carbon tax (\$300/tCO2)" Overseas Disclosure Examples: NRG Energy Inc. (US, Energy, 1/2)

Scenario analysis is conducted based on the IEA's SDS scenario and scenarios provided by the U.S. Energy Information Administration. The world view is also shown quantitatively, and calculation methods are also supplemented

Figure 5: Climate Risk Scenario Analysis

Shows changes in the fuel mix for electricity sales until 2050, with detailed calculations

- Calculation formula: NRG electricity sales amount = NRG retail sales amount + other market sales amount
- Data source:

STEP3. Identify and define range of scenarios

- > 2014, 2019, 2020: NRG results
- > 2025: NRG 2020 Budget
- 2026-2050: NRG and US EIA scenario data

* Based on U.S. Energy Information Agency \$15 carbon fee case (\$15 carbon fee beginning in 2021, rising @ 5% per annum in real term: through 2050); https://www.eia.gov/todayinenergy/detail.php?id=43176, March 2020

- NRG electricity sold = NRG retail sales + other market sales
 - NRG electricity sold is supplied by (1) NRG electricity generation + (2) NRG renewable and non-renewable electricity power purchase
 agreements (PPAs) + (3) market purchases of electricity when NRG's retail load (demand for electricity by NRG's customers)
 exceeds the sum of NRG electricity generation and NRG electricity PPAs
- NRG retail load assumed to grow @ 1.2% per annum, 2026-2050

Data sources:

- 2014, 2019, and 2020: NRG actuals
 - Excludes divestitures of power plants over 2014-2020
 - · Includes electricity generation and retail load in ERCOT, PJM, NYISO, ISO-NE, and MISO regions, as well as generation in CAISO
 - Adjusted per the methodology described below
- 2025: NRG 2020 budget, adjusted per the methodology described below
- 2026-2050: NRG and U.S. EIA scenario data

		STEP5. Identify potential
range of scenarios	impacts	responses

Overseas Disclosure Examples: NRG Energy Inc. (US, Energy, 2/2)

Developed four transition plans to achieve net zero goal in 2050

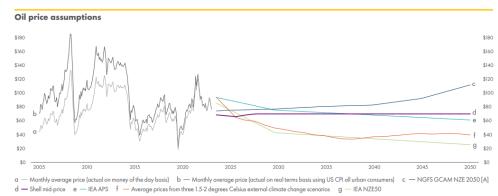
NRG's Transition Levers

To meet NRG's 1.5°C-aligned net-zero by 2050 goal, NRG is using multiple transition levers. These transition levers can be grouped into four main categories:

- DECARBONIZATION of existing business lines
- DIVERSIFICATION into low emissions businesses
- DIVESTMENT of select high emissions assets
- DEPLOYMENT of new technologies and innovations

- Adopting multiple transition measures towards the 2050 net zero goal
 - Decarbonization of existing businesses
 - Diversification into low-emission gas business
 - Divestment from selected high-emission assets
 - Development of new technology and innovation

Divestment of high emission assets


On NRG's journey to net-zero emissions by 2050, NRG will also look to exit certain high GHG activities via strategically targeted sales of non-core assets where the opportunity generates appropriate risk-adjusted returns for shareholders. Over 2014-2020, NRG divested 27,510 MW net capacity of fossil generation. In addition, in 2021, NRG divested 4.8 GW of fossil-fired power plant capacity. We will continue to monitor the market for future portfolio optimization opportunities.

- ✓ **Details of each transition method** are provided
 - Example: Specific measures for divestment from selected high-emission assets
 - High-emitting assets are being sold; from 2014 to 2020, NRG sold 27,510 MW of net fossil generation capacity

Overseas Disclosure Examples: Shell plc. (UK, Energy)

Outlook for oil and gas prices based on external climate change scenarios is being considered, and an assessment of the impact of climate change on financial statements is being conducted and disclosed

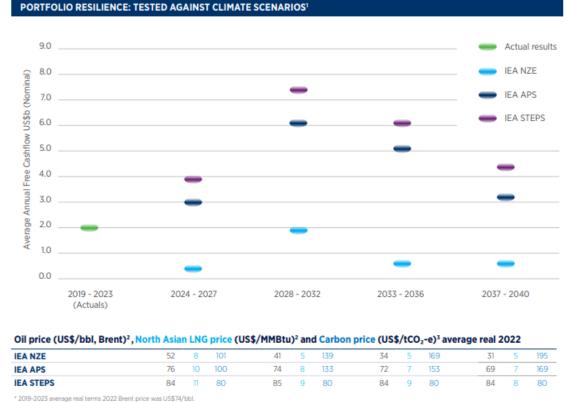
- Assessing the impact of climate change and energy transition on financial statements is being carried out as a sensitivity analysis to test financial resilience
- As a basis for sensitivity analysis, the outlook for oil and gas prices based on external climate change scenarios is considered, as oil and gas prices are one of the important assumptions supporting financial statements

Estimated oil and gas prices by scenario (only oil prices are listed below).

- IHS Markit/ACCS 2022: Oil prices gradually decline towards \$25/barrel in 2037 and recover towards \$63/barrel in 2045
- Woodmac WM AET 1.5°C: Oil prices will gradually decline towards \$28/barrel in 2050
- IEA NZE50: Oil prices will gradually decline to \$26/barrel in 2050

Assessing the impact on gas integrated assets of \$75 billion and upstream assets of \$88 billion as of December 31, 2022, taking into account various external climate scenarios.

- Adopts the average price expected from three scenarios: IHS Markit/ACCS 2022, Woodmac WM AET 1.5°C, and IEA NZE50.
 - The recoverable amounts were estimated to be \$12-16 billion and \$3-5 billion lower than their carrying values as of December 31, 2023, respectively.
- Adopting IEA's NZE50 scenario
 - The recoverable amounts were estimated to be \$15-20 billion and \$3-5 billion lower than their carrying values as of December 31, 2023, respectively.
- Considering the sensitivity of -10% or +10% to Shell's medium-term price outlook, averaged over the entire period.
 - The recoverable amount was estimated to be \$5-8 billion for each asset, with a reversal of impairment of \$2-5 billion.

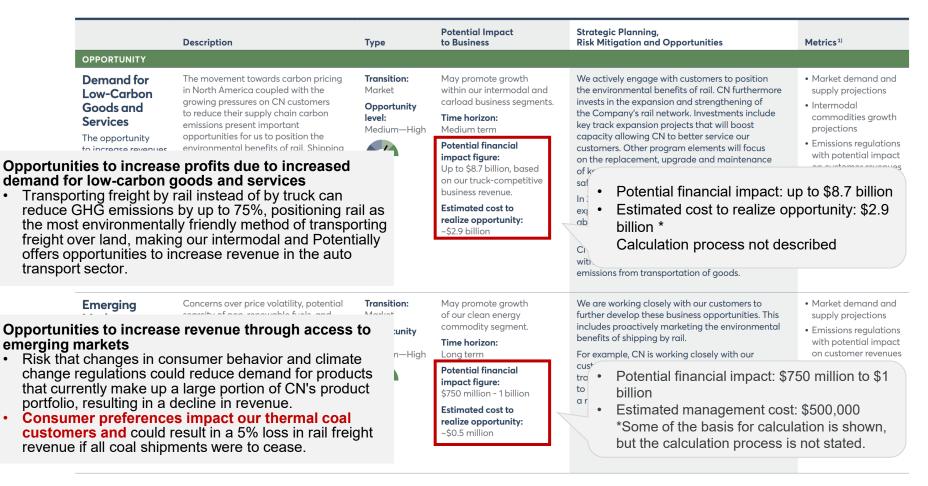

Source : Shell, Annual Report and Accounts 2023, https://reports.shell.com/annual-report/2023/_assets/downloads/shell-annual-report-2023.pdf (As of January 2025)

Appendix 1-67

Overseas Disclosure Examples: Woodside Energy Limited (Australia, Energy)

To test the financial resilience of the portfolio, the potential impact on average annual free cash flow was estimated, and targets for investment plans that contribute to low-carbon

- ✓ Estimated financial impact using three IEA scenarios (STEPS, APS, and NZE scenarios)
- As a result of the scenario analysis, state that the business impact (impact on FCF) is small, demonstrating resilience


- Average annual free cash flow (FCF) generation will increase from 2028 to 2032.
- After that, assuming there are no new oil and gas investments, it will decline due to the natural attrition of older assets in the portfolio.

出所: Woodside Energy Limited, *Climate Transition Action Plan and 2023 Progress Report*, https://www.woodside.com/docs/default-source/investor-documents/major-reports-(static-pdfs)/ctap2023/climate-transition-action-plan-and-2023-progress-report.pdf (As of January 2025)

Overseas Disclosure Examples: Canadian National Railway (Canada, Transportation)

Comprehensive disclosure of risks and opportunities based on the company's strategy and business model. Conducting quantitative business impact assessments of all major risks and opportunities

 A risk significance assessment is conducted for four risks and four market opportunities, and the potential impact on the business and the estimated costs required to manage the risk/realize the opportunity are quantitatively disclosed. However, there is no clear description of the specific calculation process Climate-Related Opportunities

Source : Canadian National Railway, 2021 TCFD Report, https://www.cn.ca/-/media/files/delivering-responsibly/cn-2021-tcfd-en.pdf (As of January 2025) *no update since 2021

Overseas Disclosure Examples: FirstGroup plc (UK, Transportation)

Original scenarios including 1.5°C are set, and the world view is described qualitatively and quantitatively. In the business impact assessment, impacts are evaluated for each risk item, divided into "low," "medium," and "high" categories

Based on the IEA SDS and NZE scenarios, four proprietary \checkmark scenarios were established according to external technological trends and degree of regulation

Table 1: Climate scenarios considered in risk modelling

Describes the potential financial impact of \checkmark transition risks and opportunities over a 5-year cumulative period, assessed for each scenario

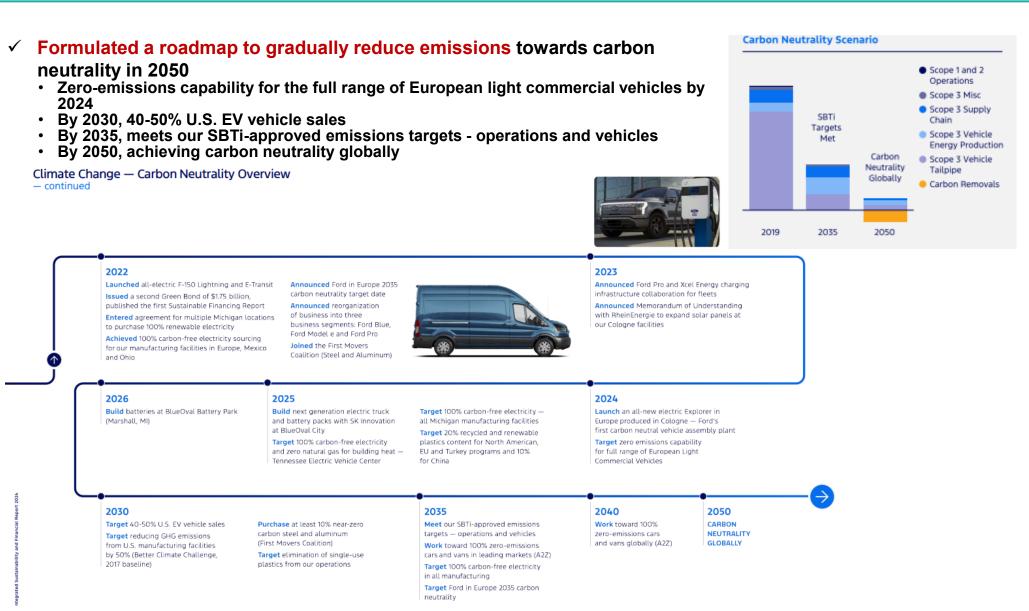
impacts

Table 2: Transition risks - potential Enterprise Value at Risk, cumulative over five-year period, assessed against different emissions pathways scenarios

	1 No	2 Current	3 Stated	Transition ri	sks/opportunities	No Policy 1	Stated Policy 3	Paris Aspiration 5
Policy Pathway	Policy	Policy	Policy	Policy	Action by central	Low impact	Medium impact	Medium impact
Global temperature increase	>4°C	3°C	2.5°C		government/regulators, including carbon pricing	Expected carbon price of ~£2 per tonne	 Expected carbon price of ~£30 per tonne by 2025 across the UK Zero emission zones leading to further route 	Expected carbon price of ~£65 per tonne
Global emissions reduction target	0%	-50%	-75%			by 2025 in some regions Low emission zones leading to some		 by 2025 across the UK Zero emission zones leading to significant
	by 2100 by 2100 by 2100		route constraints	constraints and potential loss of licence to operate	route constraints and potential loss of licer to operate			
		4 Paris	5 Paris	Technology	Cost and availability of new	Low impact	Medium impact	High impact
Conducted modeling work on		Agreement 2°C	Aspiration 1.5°C		technology to support a lower-carbon economy	 Potential impairment of carbon-intensive vehicles Ongoing investment in zero emission fleet 	Increasing impairment of carbon-intensive vehicles	 Significant investment in zero emission fle ahead of schedule
climate change-related risks. At that time, five scenarios were considered in the temperature range of 1.5°C to 4°C.		Net zero by 2070	Net zero by 2050			to meet current commitments	Some investment in zero emission fleet ahead of current schedule Some increase in cost of zero-carbon vehicles and green electricity	 Substantial increase in cost of zero-carbo vehicles and green electricity, due to dem outstripping supply
				Investors	Financing influenced by	Low impact	Medium impact	High impact
ntegrated report describes 1.5 (the two most extreme scenarios					environmental credentials	Low focus from investors on green credentials	 Moderate focus by investors More favourable interest rates for green companies 	 Significant focus by investors Expected green covenants in financing
scenario)				Customers	Demand driven by	Low opportunity	Medium opportunity	High opportunity
 <u>4°C (no policy)</u>: Even existing completely abolished. Devasta ranging from extreme weather migration. 	ating physic	al impacts			sustainability of products and services, leading to increased modal shift towards public transport	 Small shift to public transport, due to increasing environmental impacts and customers' climate awareness No transport policy to encourage modal shift to public transport 	 Increasing shift to public transport due to customers' growing climate consciousness Some transport policy to encourage modal shift to public transport 	Substantial shift to public transport due to customers' high climate consciousness Substantial transport policy to encourage modal shift
$\mathbf{O} = \mathbf{E} \mathbf{O} \mathbf{C} \left(\mathbf{u} = \mathbf{u} + u$	P 4					Lewimnest (000m	maat 000m 050m High impacts 0	50 ···

2.5°C (prescribed policy): intermediate model. Globally, policies remain relatively the same as they currently are, with additional measures likely to be introduced in the future. However, the uptake of low-carbon technologies will be slow, resulting in higher temperatures and more frequent extreme weather events.

1.5°C (Paris Ambition): Assumes that countries around the world work together to ensure that global temperature increases are kept as low as possible through an immediate transition to net-zero carbon emissions. Global transport remains primarily powered by fossil fuels, and a 1.5°C pathway is expected to have a major impact on the transport sector.


Low impact <£20n Medium impact £20m – £50m High impact >£50n nited opportunity <£20m Medium opportunity £20m - £50m High opportunity >£50n

Source : FirstGroup plc, Annual Report and Accounts 2024, https://www.firstgroupplc.com/~/media/Files/F/Firstgroup-Plc/reports-and-presentations/reports/annual-report-2024.pdf (As of January 2025)

		STEP5. Identify potential
range of scenarios	impacts	responses

Overseas Disclosure Examples: Ford Motor Company (US, Transportation)

Discloses roadmap towards carbon neutrality in 2050

Source : Ford, Integrated Sustainability And Financial Report 2024, https://s201.q4cdn.com/693218008/files/doc_financials/2023/ar/2024-Ford-Integrated-Sustainability-and-Financial-Report_Final.pdf (As of January 2025)

Overseas Disclosure Examples: The Dow Chemical Company (US, Materials, Buildings)

Adopted a phased approach to decarbonization for multiple scenarios, explaining that the business strategy is resilient

Describe the scenarios and clearly state that the strategy is resilient by providing business opportunities under each scenario

Transition Risks

Most recently, Dow has utilized two scenarios to assess strategy and exposure to transition risk: one where global ambition aligns with the IEA Net Zero Emissions by 2050 scenario (NZE) for decarbonization, and another with IEA Stated Policies Scenario (STEPS) that reflects the impact of existing policies on energy use, emission and energy security.

Different scenarios yield a range of outcomes; for instance, in the Net Zero Emissions by 2050 Scenario, Dow's cost of regulatory compliance is higher than in the Stated Policies scenario, but so are its opportunities for the development of low-emissions goods and services and low-emissions technologies.

Scenario Description, 2050 Snapshot	IEA Net Zero Emissions by 2050	IEA Stated Policies
Description	Coordinated path to decarbonization	Conservative benchmark for the future
Market trends	Increased demand for solutions that mitigate climate change	Slower, regionally driven demand for solutions that mitigate climate change
Temperature rise (by 2100)	1.4°C	2.4 °C
Carbon price (USD per ton of CO ₂)	250 (USD per metric ton of CO ₂) for advanced economies with net zero emissions pledges	135 (USD per metric ton of CO ₂) for European Union
Renewable energy (% of total primary energy)	71 %	31 %

Dow's strategy is resilient to a range of potential outcomes. Dow's phased approach to decarbonizing its assets while growing its business will enable the Company to reduce Scope 1 and 2 GHG emissions in line with a well-below 2°C world, while mitigating the affordability risk that presents itself should there be a slower global adoption of the regulatory frameworks needed to address climate change, as is the potential under the Stated Policies scenario. Dow expects to invest an average of \$1 billion per year across the economic cycle to decarbonize manufacturing assets. Dow has a roadmap outlined that enables the Company to decarbonize its manufacturing footprint while growing. This roadmap includes replacing end-of-life assets with high-efficiency, low-emissions assets. This phased approach allows Dow to adjust its investment timing based on affordability, regulatory drivers and market demand.

Dow's downstream businesses view all scenarios as opportunities to develop solutions related to climate change. These include increased demand for solutions that aid customers in achieving their climate goals, whether it involves mitigation of climate change or products that address climate adaptation. This extends to packaging products that reduce food waste and improve resource efficiency, mobility solutions that reinforce the transportation industry's electrification initiatives, and applications for building envelopes that enable more energy-efficient buildings.

Overseas Disclosure Examples: Freeport-McMoRan Inc (US, Materials, Buildings, 1/3)

Three unique scenarios are set up to detail the envisioned worldview: aggressive climate change measures (1.5°C), moderate climate change measures (~2.5°C), and status quo (~4°C)

STEP3. Identify and define range of scenarios

✓ For transition risks and physical risks, the IEA and IPCC (models used in the Fifth Assessment Report) are used, and unique scenarios are set qualitatively and quantitatively

2021 GLOBAL CLIMATE SCENARIO ANALYSIS SUMMARY

Our 2021 global climate scenario analysis considered both physical risks and transition risks and opportunities across three different climate scenarios: no climate action* scenario, moderate climate action scenario and aggressive climate action scenario. In general, the results of the analysis demonstrated that physical risks are highest for FCX in the no climate action scenario and lowest in the aggressive climate action scenario. Conversely, transition risks and opportunities are highest in the aggressive climate action scenario and lowest in the no climate action scenario. Our global scenario analysis covered our operational and non-operational assets as well as our supply chain. For more detailed information on our global climate scenario analysis, please refer to our 2020 and 2021 Climate Reports.

AGGRESSIVE CLIMATE ACTION (1.5°C)

Global collaboration to reduce GHG emissions to meet Paris Agreement goals and reduce emissions to net zero by 2050

Reference Scenarios:

Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and International Energy Agency (IEA) Net Zero Emissions by 2050

MODERATE CLIMATE ACTION (~2.5°C)

Uncoordinated response based on announced policy commitments that are insufficient to meet the Paris Agreement goals

Reference Scenarios:

IPCC RCP 4.5 and IEA Stated Policies Scenario, implementation of climate policies

NO CLIMATE ACTION* (~4.0°C)

Unabated increases in emissions due to increasing use of fossil fuels leads to significant physical risks

Reference Scenarios:

IPCC RCP 8.5 and IEA Current Policies Scenario, high-end estimate of non-climate policy scenarios

Lower GHG emissions, increasing transition risks and opportunities

Higher GHG emissions, increasing physical risk

Examples of the introduction of the ICP system are cited as climate change-related countermeasures based on scenario analysis, and are linked to decision-making regarding current and future business plans

Based on the results of the scenario analysis, the Internal Carbon Pricing System (ICP) was introduced.
 Assess and incorporate into decision-making the impact on current and future long-term business plans.
 Commitment to continue reviewing pricing in accordance with external climate change-related policies

INTERNAL CARBON PRICING

In many of the jurisdictions in which we operate, governmental bodies are increasingly enacting legislation and regulations in response to the potential impacts of climate change. Carbon tax legislation has been adopted in jurisdictions where we operate, including Indonesia. We expect that such carbon taxes and other carbon pricing mechanisms will increase over time. Depending on the future state of various climate policies and the speed at which the world adopts various policies and initiatives, we recognize that all of our operating regions must prepare for carbon pricing regimes. With the benefit of our global scenario analysis (discussed in more detail in the Resilience section), as well as input and ongoing dialogue with external stakeholders and associations, FCX has established internal carbon shadow prices that include \$50, \$100, and \$150 per metric ton of CO₂ equivalent, reflecting the results and inputs from our three scenarios - no climate action (~4.0°C, formerly referred to as "Current State"), moderate climate action (~2.5°C) and aggressive climate action (1.5°C) – evaluated in our global climate scenario analysis completed in 2021.

We continue to work to integrate these internal carbon prices into our business processes to evaluate the potential impacts of an imposed carbon pricing regime on our current operations, longer-term business plans and potential future projects. We have integrated this internal carbon shadow price range into our life-of-mine plans and continue to socialize the use of internal carbon shadow prices with our project teams, incorporating its use in evaluating select projects as additional input to our decision-making for both existing operations and future projects. We recognize that climaterelated policy changes are dynamic and rapidly shifting, and that our pricing assumptions must also be iterative and flexible. Accordingly, we are committed to reviewing our carbon pricing scale periodically so that the range is appropriate and relevant.

Introduction of Internal Carbon Pricing (ICP)

- Background: "Carbon tax laws have been adopted in the jurisdictions in which we operate, including Indonesia. Such carbon taxes and other carbon pricing are expected to increase over time. Depending on the various future climate policies and the speed at which the world adopts various policies and initiatives, we recognize that all of our operating jurisdictions will need to be prepared for carbon pricing schemes. "
- ICP Set Price: "Following dialogue in our scenario analysis, we have established internal carbon prices (shadow prices) including \$50/tCO2, \$100/tCO2, and \$150/tCO2. We believe this will be a key decision-making factor for both current and future projects. We are working to incorporate this price into our business processes to assess the potential impact of the carbon pricing system on our current operations, long-term business plans, and future projects."
- Case study: "We have begun to incorporate it into our internal mine life planning, and we have also incorporated this price range into our project evaluation and approval process."

STEP5. Identify potential responses

Overseas Disclosure Examples: Freeport-McMoRan Inc (US, Materials, Buildings, 3/3)

Targets for achieving carbon neutrality by 2050, and presents emission reduction targets through 2030 by reducing emission factors, and shows reduction pathways through electrification of facilities and energy efficiency

Explain the details and projects (currently being implemented or under consideration) of the four specific \checkmark routes to 2030/40 towards net zero in 2050 SUMMARY OF DECARBONIZATION INITIATIVES BY LEVER

ILLUSTRATIVE NET ZERO PAT			LEVER	DETAILS	PROJECTS IN PROCESS AND/OR UNDER EVALUATION
DECARBONIZING ELECTRICITY SUPPLY	2023 2010 Interim GHG Targets Industrial scale next generation renewable power sources such as hydrogen and geothermal	2040 → 2050 Net Zero Aspiration • Carbon capture and storage • Advanced next generation renewable:	1 DECARBONIZING ELECTRICITY SUPPLY	Purchased electricity generates more than half of the GHG emissions of our Americas copper operations. Renewable energy projects and power purchase agreements (PPAa) in the U.S., Chile and Peru will be important to progressing our GHG emissions reduction efforts. In some jurisdictions where we operate, such as Chile, we benefit from using the local grid when renewables are integrated. In Indonesia, approximately 63% of our current GHG emissions generated result from our coal-fired power plant.	Progressing the first phase of Copper Skies initiative to integrate up to 450MW in renewable power projects (wind/solar/battery storage) and PPAs in the U.S. Executed a new 160MW renewable PPA in Peru to replace the existing contract b on natural gas fueled generation Continuing to evaluate opportunities in Chile to incorporate renewable power Built and currently commissioning a new DFPP at PT-FL, which will operate initial using biodiesel and evaluating feasibility to transition to LNG
	such as liquefied natural gas (LNG)		2	Electrification of our haul trucks and other ancillary and light-duty equipment will be critical to decreasing our Scope 1 GHG emissions across our global operations. There is not currently a commercially viable alternative to the	Continue to participate in Caterpillar's Early Learner program and Komatsu's GHG A Currently completing second year of two-year trials of 400-ton diesel-electric Kon and Caterpillar trucks at Cerro Verde; evaluating a full diesel-electric filet as a fut
EQUIPMENT ELECTRIFICATION	Autonomous electric trains and mobile equipment Hybrid or electric support equipment & light-duty trucks Diesel-electric haul trucks Conveyance and other haulage alternatives Autonomous and electrified or alternative use Autonomous and electrified or alternative infrastructure	 Fully electrified mine equipment Advanced batteries and storage 	EQUIPMENT ELECTRIFICATION	diesel-fuel haul trucks used at our open-pit operations. Electrification of ancillary equipment and light-duty vehicles can also support our efficiency and potentially reduce ventilation demands at our underground operations at PT-FI.	Platform for further electrification, including trolley assist systems Initiated a project to convert Bagdad's haul truck fleet to autonomous and evaluat options at other sites Designed, built and currently operating an autonomous electric train at PT-FI under Evaluating in-pit crushing and conveying at several mine sites Evaluating and testing various options for electrifying ancillary and light-duty equi Actively involved in industry groups to create pathways for decarbonization
ENERGY & ASSET EFFICIENCY	Artificial intelligence and machine learning flow sheet with step flow sheet w	Continued efforts to drive efficient use and long life of equipment and infrastructure	3 ENERGY & ASSET EFFICIENCY	Increased energy and asset efficiency at our sites can help support both our operational- and emissions-related performance. For example, by providing our operators with predictive dats from machine learning technology, we have successfully enhanced concentrator throughput and efficiency at certain of our sites. FCX also has an extensive hault truck rebuilt program to extend the life of our wisting equipment, which avoids capital and Scope 3 GHG emissions. Sites are also working to identify other potential efficiency projects that will support GHG emissions reductions.	Digital twin technology Energy management systems Several mill recovery improvement projects underway, including trials of new tech related to floation Improvements to high pressure grinding mill circuits Haul truck cycle-time improvements; digital haul truck operator scorecards (HTC) Haul truck teabild program to extend equipment life
PROCESS INNOVATION	Leach to the Last Drop Ore sorting Advanced block cave Advanced flotation Coarse particle filtration Coarse particle filtration		4 PROCESS INNOVATION	Through process innovations, such as Leach to the Last Drop, we are advancing efforts to improve copper recovery from our leach processes, including initiatives across our North America and South America operations to incorporate new applications, technologies and data analytics. Our CLP innovation allows for the hydrometallurgical processing of copper sulfide concentrates and advanced processing of molybdenum concentrates. For cooper, CLP is a less energy intensive alternative to smelting, and for molybdenum, CLP results in a more refined product directly at the mine site.	CLPs at Morenci and Bagdad are operational Internal and external initiatives underway to advance sulfide leaching technologi to drive continuous recovery improvement; focused on traditional ores and ores to been considered difficult to leach, like chalcopyrite In research and development phase and conducting in-field trials at existing leac stockpiles and future opportunities to recover copper from below mill cut-off grammaterial

Describe the means to achieve net zero in 2050 (example: 1)

- 2022-30: Large-scale renewable power centered on wind and solar power, microgrid integration including battery storage, and low-carbon power sources such as LNG
- 2030-40: Industrial-scale next-generation renewable power sources such as hydrogen and geothermal
- 2040-50: Carbon capture and storage, advanced next generation renewable energy

Details for each method, and projects being implemented or under consideration (example: (1))

- Details: More than half of the greenhouse gas emissions at our US Continental Copper operations are generated by purchased electricity. Renewable energy projects and power purchase agreements (PPAs) in the US, Chile, and Peru will be critical to advancing efforts to reduce greenhouse gas emissions.
- Project: Promoting the first phase of the Copper Skies initiative to integrate up to 450 MW into U.S. renewable power projects (wind/solar/battery storage) and PPAs

Source : Freeport-McMoRan, 2022 Climate Report, https://www.fcx.com/sites/fcx/files/documents/sustainability/2022-Climate-Report.pdf; 2023 Climate Update https://www.fcx.com/sites/fcx/files/documents/sustainability/2023-Climate-Report.pdf (As of January 2025)

Overseas Disclosure Examples: Newmont Corporation (US, Materials, Buildings, 1/2)

Original scenarios based on IEA STEPS, SDS, and NZE scenarios, detailing a world view based on IEA forecasts, long-term macroeconomic projections, etc.

- Qualitatively and quantitatively explain the worldview up to 2050 based on the current business and project portfolio
- Explain the worldview of the scenario using seven variables (carbon price, gold price, crude oil price, electricity, renewable energy, transportation, energy sector policy, grid emission factor, world GDP, world population)

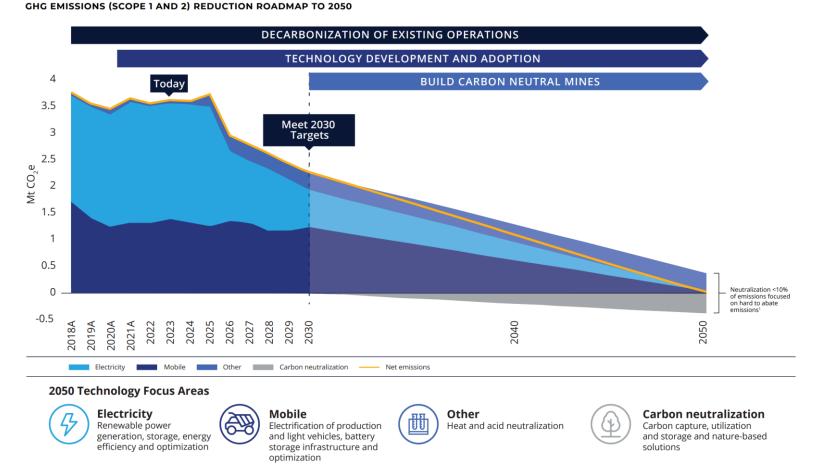
Scenario framework

1	Transitional Change2Reliance on fossil fuels with greater than 3°C temperature rise	Planned Energy Transition 3 Limit global warming to well below 2°C	Accelerated Response Limit global warming to 1.5°C
	 Consistent with the IEA's <u>Stated</u> <u>Policies Scenario</u>¹ Results in a shortfall in meeting the goals of the Paris Agreement 	 Most consistent with the IEA's <u>Sustainable Development Scenario</u>¹ Phased actions during the 2020s to limit global warming to well below 2°C 	 Most consistent with the IEA's <u>Net</u>. <u>Zero Emissions by 2050 Scenario</u>¹ Accelerated actions prior to 2030 to limit global warming to 1.5°C

Scenario 1 is the IEA STEPS scenario, Scenario 2 is the IEA SDS scenario, Scenario 3 is generally consistent with the IEA's NZE scenario

Key assumptions for Newmont's climate scenarios¹

Scenario assumptions^{1, 2, 3}


Macroeconomics² Climate scenarios Gold price (\$/oz) - \$1,500 Transitional Change Silver price (\$/oz) - \$23 Planned Energy Transition Accelerated Response Accelerated Response USD/AUD - \$0.75 Mineral prices based on macroeconomic forecasts Mineral prices based on macroeconomic forecasts € Variables Statural gas: \$7.7/MBtu in 2020, \$8.3/Mbtu in 2050 (base EU costs)		willow 5 climate Section 105			
Gold price (\$/oz) - \$1,500Transitional ChangeSilver price (\$/oz) - \$23Planned Energy TransitionCopper (\$/lb) - \$3.25Accelerated ResponseUSD/AUD - \$0.75Accelerated ResponseMXN/USD - \$21.0Mineral prices based on macroeconomic forecastsMineral prices based on macroeconomic forecastsMineral prices based on macroeconomic forecasts			1	Variables	Scenario assumptions
Gold price (\$/oz) - \$1,500Transitional ChangeSilver price (\$/oz) - \$23Planned Energy TransitionCopper (\$/lb) - \$3.25Accelerated ResponseUSD/AUD - \$0.75Accelerated ResponseMXN/USD - \$21.0Mineral prices based on macroeconomic forecastsMineral prices based on macroeconomic forecasts✓ Natural gas: \$7.7/MBtu in 2020, \$8.3/Mbtu in 2050 (base EU costs)	Macroeconomics ²	Climate scenarios		External	
Copper (\$/lb) - \$3.25Accelerated Response• Carbon price: rises to \$40/tCO2 in 2030 and \$50/tCO2 in 2USD/AUD - \$0.75• Gold price: \$1,500/oz• Gold price: \$1,500/ozMXN/USD - \$21.0• Crude oil: rises to \$77/barrel in 2020 and \$88/barrel in 2USD/CAD - \$0.80• Mineral prices based on macroeconomic forecasts• Natural gas: \$7.7/MBtu in 2020, \$8.3/Mbtu in 2050 (base EU costs)	Gold price (\$/oz) – \$1,500	Transitional Change		Carbon price⁴ (\$40/tCO, by 2030, increasing up to \$50/tCO, by 2050
Copper (\$/16) - \$3.25 Accelerated Response • Gold price: \$1,500/oz USD/AUD - \$0.75 • fossil fuel prices MXN/USD - \$21.0 ✓ Crude oil: rises to \$77/barrel in 2020 and \$88/barrel in 2 USD/CAD - \$0.80 Mineral prices based on macroeconomic forecasts ✓ Natural gas: \$7.7/MBtu in 2020, \$8.3/Mbtu in 2050 (base EU costs)	Silver price (\$/oz) – \$23	Planned Energy Transition			· · · ·
USD/AUD - \$0.75 • fossil fuel prices MXN/USD - \$21.0 E ✓ Crude oil: rises to \$77/barrel in 2020 and \$88/barrel in 2 USD/CAD - \$0.80 Mineral prices based on macroeconomic forecasts • Natural gas: \$7.7/MBtu in 2020, \$8.3/Mbtu in 2050 (base EU costs)	Copper (\$/lb) – \$3.25	Accelerated Response			
MXN/USD - \$21.0 USD/CAD - \$0.80 Mineral prices based on macroeconomic forecasts Mineral prices based on macroeconomic forecasts	USD/AUD – \$0.75				
macroeconomic forecasts EU costs)	1XN/USD – \$21.0				
	USD/CAD – \$0.80	•		-	o
C ✓ Thermal coal: \$67/ton in 2020, \$63/ton in 2050		macroeconomic forecasts			,
				_′ ✓ Thern	nal coal: \$67/ton in 2020, \$63/ton in 2050

Source : Newmont Corporation, 2022 Climate Report, https://s24.q4cdn.com/382246808/files/doc_downloads/2023/05/Newmont-2022-Climate-Report.pdf As of January 2025) *no update since 2022

Overseas Disclosure Examples: Newmont Corporation (US, Materials, Buildings, 2/2)

Setting the goal of achieving carbon neutrality by 2050 and charting a transition path

The project will focus first on deploying commercially available technologies to decarbonize existing operations. Collaborate with joint venture partners on technology development strategies and timelines and develop a technology roadmap for capital projects to identify new technologies that will support the construction of carbon neutral mines and redefine the project pipeline to be carbon neutral

Source : Newmont Corporation, 2022 Climate Report, https://s24.q4cdn.com/382246808/files/doc_downloads/2023/05/Newmont-2022-Climate-Report.pdf (As of January 2025) *no update since 2022

Overseas Disclosure Examples: J Sainsbury Plc (UK, Agriculture, Food, and Forest Products)

For each risk/opportunity identified in the 1.5°C and 4°C scenarios, the impact on earnings is disclosed for each risk/opportunity when countermeasures are taken and when no action is taken

Explaining the calculation method, the impact on revenue is presented for the risks identified in the 1.5°C and 4°C scenarios for the years 2030 and 2050, with and without taking measures to address the risks

To assess the financial impact associated with reg Fuel in the UK. For regulation risks, we considered t and hybrid cars and vans from 2035 on the Fuel cat costs are assumed to pass on directly to customers uptake of battery electric vehicles leading to a 50 p climate-conscious customers favouring lower GHG	ulation and changes in consur he impact of a carbon price or egory. For Meat, Fish and Pou s, reducing demand for the hig er cent reduction in fuel dema emission protein and purchas	on most exposed products in a low emissions scenario in 2030 ner preferences, we evaluated the sale of Meat, Fish and Poultry, Clothing and n the Meat, Fish and Poultry category and the ban of the sale of new petrol, diesel ltry the carbon prices applied in our scenario analysis align with IPCC data and hest emission Meat, Fish and Poultry products. For Fuel we have assumed a rapid and by 2030. For consumer preference, we considered the impact of more sing more second-hand clothing (displacing new clothing purchases).	Most material	Annual revenue lo isolation in 1.5°C s actions are taken Meat, Fish and	cenario in 2030 to mitigate risl	
transition risks are experience las the world atter	npts to meet the Paris Agree	which physical risks associated with climate change are limited, but high ment. As the results do not reflect the impact of any mitigating actions, the loping and promoting lower GHG animal protein and nutritionally positive	transitional climate risks ^{a)} :	Poultry	-	
-	om existing and new custom	ers. The Fuel result does not capture the business opportunity from providing	Regulation	£50m to £100m revenue loss to MFP category in isolation	N/A	£2,900m to £3,000m revenue loss to fuel category in isolation
	15565511611		•	Overall opportunity to business post- mitigations		Smaller revenue loss risk/potential opportunity to business post- mitigations
	changes high GH ≻ If no ac 300-350	e: Business impact due to risk of a in demand for animal protein with G emissions ation is taken: estimated revenue loss of D million euros in 2030 essed: Overall opportunity	Changes in consumer preferences	£350m to £400m revenue loss to MFP category in isolation <i>Overall</i> <i>opportunity to</i> <i>business</i> <i>post-</i> <i>mitigations</i>	£35 to £40m revenue loss to Clothing category ir isolation	N/A

Source : J Sainsbury Plc, Annual Report and Financial Statements 2024, https://www.about.sainsburys.co.uk/~/media/Files/S/Sainsburys/documents/reports-and-presentations/annual-reports/2024/sainsbury-annual-report-and-financial-statements-2024.pdf (As of January 2025)

Overseas Disclosure Examples: Mondi Group (UK, Agriculture, Food, and Forest Products)

Assessment of financial impact, timeframe, and scenario sensitivity is conducted for risks and opportunities

		Estimated financial		Timeframe		Sc	enario sensi	tivity
Climate change-related risks		impact (€m)	Short	Medium	Long	1.5°C	2°C	BAU
Physical	1. Higher wood procurement costs	90-180				••		
risks	2. Risk of flooding	15-85		_	•	•	••	
	3. South African plantation yield loss	15-20		•				
	4. Chronic changes in precipitation	10-15		_	•	•		
Transition	5. Energy supply costs	60-150		•				
risks	 GHG emissions regulatory changes (net impact) 	30-85		•		•••••	••••	•••
	7. Asset impairment risk	10-30			•			
Total climat	e change-related risks	230-565						
Climate cha	nge-related opportunities							
1. Changing	customer behaviour	120-240				*****		
2. Reduced	operating costs through energy efficiency	15-25		•		*****		
3. Sale of by	-products	15-20	•			*****		
Total climat	e change-related opportunities	150-285						
				Anticipated risk or oppo		*****	High likeli	hood
				Estimated fu of risk or op		•••	l ow likeli	bood

Evaluates financial impact, timeframe, and sensitivity in each scenario for risks and opportunities

Risk/opportunities

- Physical risk
 - Higher wood procurement costs
 - Risk of flooding
 - South African plantations yield loss
 - Chronic changes in precipitation
- Transition risk
 - Energy supply costs
 - Changes in GHG regulations (net impact)
 - Asset impairment risk

- Opportunity
 - Changing customer behavior
 - Reducing operating costs through energy efficiency
 - Sale of by-products

Climate change-related risks: Physical risks

Risk	Risk description	How we manage and mitigate this risk	Estimated financial impact (€m)
1. Higher wood procurement costs Timeframe:	Temperature increase, changes in rainfall patterns and windstorms can result in large-scale forest damage. In Europe, at lower altitudes, fibre losses from pests (e.g. bark beetles) and diseases are expected to continue unless precipitation increases.	In mountainous regions, we expect an increase in yearly forest growth due to rising temperatures. At lower altitudes, spruce will be mainly replaced with other softwood species. We are investigating alternatives to support flexibility in species mix for our future pulp production.	90-180
ong term	A reduction in the cutting capacity of the sawmilling industry due to a lack of spruce saw logs could lead to a change in the mix of available pulpwood and sawmill chips.	We invest in research and development projects and are building strategic partnerships with forest owners and industries, NGOs and scientific institutions to foster sustainable forest management.	
	Increasing competition for wood is being driven by demand for renewable raw materials and timber for green energy generation to achieve EU GHG reduction and Net-Zero targets. At the same time, there is a call to increase forest areas set aside	This is supported by the sustainable working forest model and fit-for-purpose certification concepts, which we developed and promote with our partners. We have started to explore approaches to climate-fit forestry to enhance forest ecosystems' resilience.	
	for conservation, which is reflected in the 2030 EU Forest Strategy.	We also promote the cascading use of wood nationally and via Cepi on a European level.	

Describes the impact of each risk/opportunity on your company and countermeasures

Source : Mondi Group, Integrated report and financial statements 2023, https://www.mondigroup.com/globalassets/mondigroup.com/investors/results-reports-and-presentations/2023/annual-report/mondi-group-integrated-report-and-financial-statements-2023.pdf (As of January 2025)

Overseas Disclosure Examples: Eaton Corporation plc (US, Electricity, Machinery, Communication, 1/3)

Scenarios of 1.5°C, 2°C, and 2°C or higher are set with reference to external data from the IEA, IPCC, and other sources. Each scenario describes drivers such as energy intensity and government regulations

✓ **Drivers are listed for each scenario** regarding "regulations/policies," "economy," and "energy intensity."

Scenario classification	Risk focus	Climate scenarios analyzed	Global average temperature increase by 2100	Scenario drivers
1.5°C (Net zero)	Transition Risks	IEA Net zero	1.5°C	Lower challenges to mitigation and adaptation. Economic growth emphasizes human well-being and lower resource and energy intensity.
~2°C	Both transition risks and physical risks	SSP1-2.6	1.7-1.8°C	Low challenges to mitigation and adaptation. Economic growth emphasizes human well-being and lower resource and energy intensity.
		IEA announced policies	2°C	Announced nationally determined contributions are implemented.
Above 2°C	Physical risks	IEA stated policies	2.6°C	Actions taken to enforce policies affecting energy markets (policies adopted by 2022).
		SSP5-8.5	3-5°C	Emissions double by 2050. Quick global economic growth and high energy intensity.

Figure 4: Climate scenarios table

Source : Eaton, Task Force on Climate-related Financial Disclosures report 2023, https://www.eaton.com/content/dam/eaton/company/sustainability/files/eaton-tcfd-disclosure.pdf (As of January 2025) *no update since 2023

Overseas Disclosure Examples: Eaton Corporation plc (US, Electricity, Machinery, Communication, 2/3)

Based on scenario analysis, specific countermeasures are integrated with business strategy to contribute to increasing corporate value by reducing climate change-related risks and capturing opportunities

nce 2020,

) to grow

roduction

n into our

۱S.

bact

Describes specific measures to reduce energy \checkmark demand and green energy supply to reduce climaterelated risks and seize opportunities

We are working to both reduce our energy demand What we're doing: and green our energy supply. We are focusing on the first six primary lavare (Figure 13) to reduce

We are targeting \$3 billion in sustainable

- our Transition plan due to climate change
- Prioritize energy efficiency, renewable energy the •
- cart procurement and feed new renewable energy into offs
- the grid. aim
- The goal is to invest \$3 billion in sustainable effic •
- research and development by 2030. Since 2020, the pro
- nev company has invested \$900 million in research and development to grow sustainable solutions.

Financial plan

Described about 2022 outlook for investments and acquisitions in companies offering green solutions, assuming that climate change opportunities can provide an additional 8-10% EPS growth over the next five years. (Example)

- Acquired Green Motion, a major designer and manufacturer of electric vehicle charging hardware and related software. Complementing existing energy storage and distribution offerings and positioned to grow with the global energy transition to electric vehicles.

- In August 2021, we made a strategic investment in Reactive Technologies, a grid technology company based in the UK and Finland.

The results of scenario analysis are integrated into financial planning for investments, acquisitions, etc.

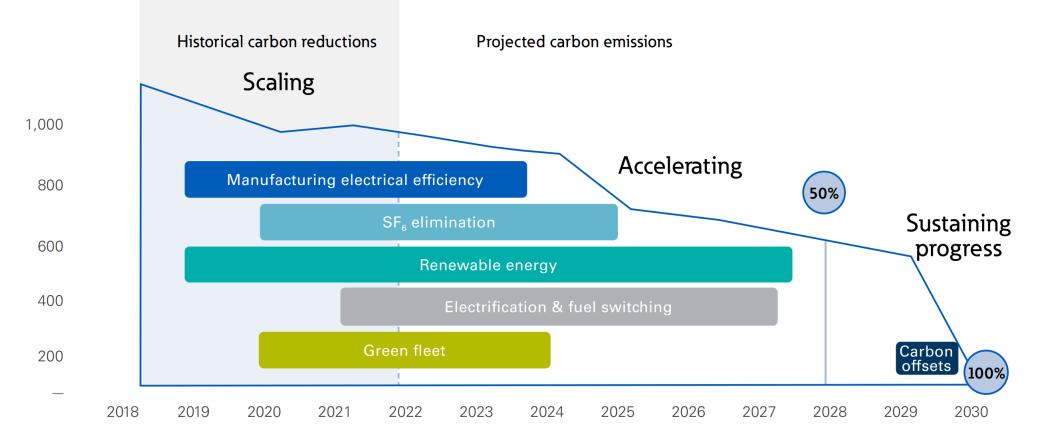
Financial planning: Eaton is actively managing its portfolio and expects to deliver higher margins and more consistent earnings supported by secular growth trends: sustainability, intelligent and connected products, and electrification and energy transition. Climate transition opportunities position Eaton to deliver an incremental 8-10% EPS growth between 2021-2026. Eaton has been working to formalize integration of ESG risk considerations in its M&A activities. Recent acquisitions deployed capital in businesses poised to respond to these opportunities:

- ▶ Jiangsu Ryan Electrical: Eaton recently acquired a 49% interest in Jiangsu Ryan Electrical, which manufactures power distribution and subtransmission transformers in China, focusing on dry-type transformers that are a booming market amid an increasing renewable energy base and rising electricity consumption globally.
- Innovative Switchgear and Ulusoy Electrik: In 2019 Eaton acquired Innovative Switchgear, and a 93.7% controlling interest in Ulusoy Electrik, to expand Eaton's offerings in medium voltage switchgear and other equipment for utility customers, including more environmentally-friendly SF_e-free solutions.
- Reactive Technologies: In August 2021, Eaton made a strategic investment in the UK and Finland-based grid technology company, Reactive Technologies Ltd. Eaton is collaborating with Reactive on supporting utilities to cost-effectively increase renewable energy capacity.

Souriau-Sunbank: Eaton acquired Souriau-Sunbank Connection Technologies in 2019 to enhance offerings of highly engineered electrical interconnect solutions for harsh environments in the aerospace, defense, industrial, energy and transport industries. Harsh environments will be more frequent as customers mitigate climate risks, making harsh environment solutions more important in the future.

STEP5. Identify potential responses

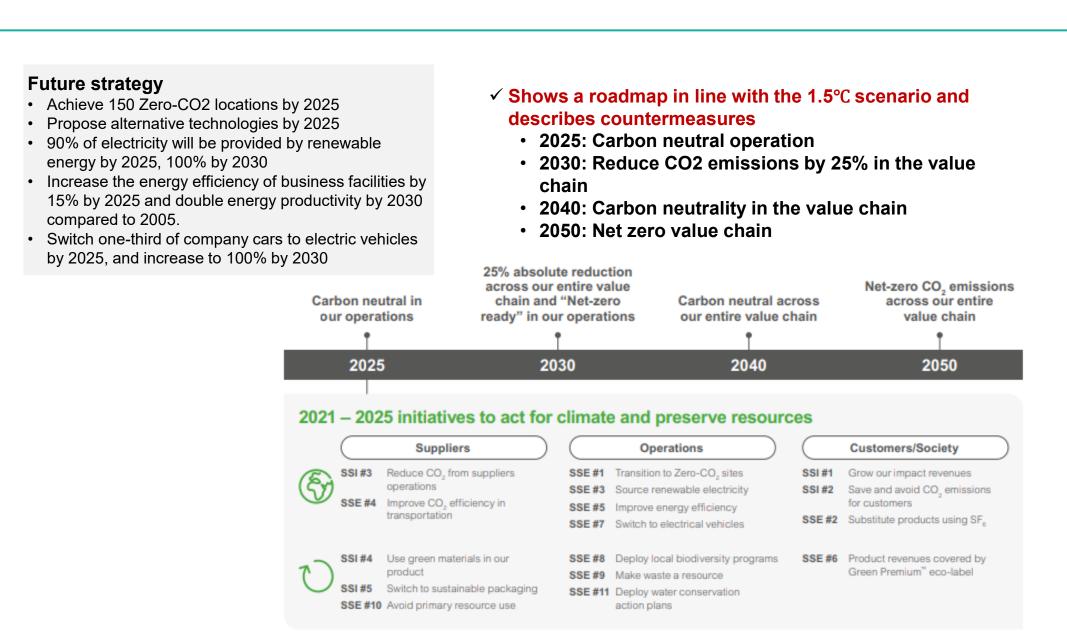
- Tripp Lite: Eaton's March 2021 acquisition of Tripp Lite expands and strengthens Eaton's singlephase, uninterrupted power supply system and data center solutions, product lines that support growing demand for reliability, edge computing and distributed information technology in the face of increased energy challenges.
- ▶ Green Motion: In March 2021, Eaton acquired Green Motion SA, a leading designer and manufacturer of electric vehicle charging hardware and related software. This acquisition complements existing energy storage and power distribution offerings, and positions Eaton to grow with the global energy transition to electric vehicles.


Source : Eaton, Task Force on Climate-related Financial Disclosures report 2023, https://www.eaton.com/content/dam/eaton/company/sustainability/files/eaton-tcfd-disclosure.pdf (As of January 2025) *no update since 2023

	or Er of laonaly potontial
range of scenarios impacts	responses

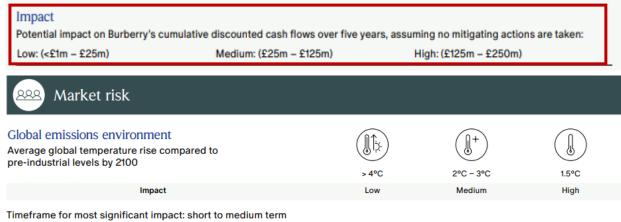
Overseas Disclosure Examples: Eaton Corporation plc (US, Electricity, Machinery, Communication, 3/3)

Transition plan is presented with the goal of achieving carbon neutrality by 2030


 Demonstrate plans to achieve carbon neutrality through manufacturing efficiency, introduction of alternative solutions, renewable energy, green fleets (Deploying electric vehicles, charging infrastructure, and more efficient vehicles for sales, service, and other business fleets), electrification and fuel switching (Switch to sustainable fuel sources where possible and, if difficult, electrify processes with renewable energy), carbon offsets, etc.

Source : Eaton, Task Force on Climate-related Financial Disclosures report 2023, https://www.eaton.com/content/dam/eaton/company/sustainability/files/eaton-tcfd-disclosure.pdf (As of January 2025) *no update since 2023

Overseas Disclosure Examples: Schneider Electric SE (France, Electricity, Machinery, Communication)


Discloses a roadmap and specific measures to achieve 1.5°C by 2050

Source : Schneider Electric, 2023 Universal Registration Document Financial and Sustainable Development Report, https://www.se.com/ww/en/assets/564/document/462018/2023-universal-registration-document.pdf (As of January 2025)

Overseas Disclosure Examples: Burberry Group PLC (UK, Consumer Discretionary, Pharmaceutical)

Evaluating business impact in >4°C, 2°C-3°C, and 1.5°C scenarios

✓ The impact on profits if each risk is not addressed is shown as low, medium. or high

- Low: <1m-25m lbs
- Medium: 25-125m lbs
- High: 125m-250m lbs

✓ Presenting the financial impact of >4°C, 2°C-3°C, and 1.5°C scenarios for the following key risks:

- Physical risk
- Regulatory changes
- Market changes
- Change in reputation
- Liabilities

Example of describing risks to the market

- How to model market risk: Quantifying how changes in consumer preferences towards more sustainable and less carbon-intensive products affect demand for products
- Potential areas of impact: A shift away from products made with less sustainable raw materials, including animal products, to organic, recycled and recycled materials. The timing is expected to occur in the short to medium term, and is expected to occur sooner in geographic regions where there is greater societal concern for sustainable materials used in clothing production.
- Key assumption: Consumer sentiment towards Burberry products is assumed to be related to the carbon footprint of raw material sourcing, production and distribution. The scenario analysis is based on Burberry's future product strategy. The impact of changes in consumer preferences on operating profit margins, etc. is considered and evaluated in line with the current cost structure.

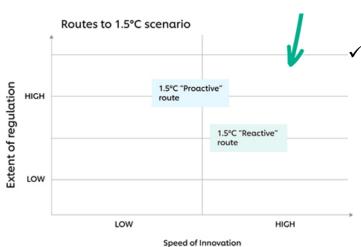
Source : Burberry Group PLC, Annual Report 2023/24, https://www.burberryplc.com/content/dam/burberryplc/corporate/2024-updates/burberry-annual-report-and-accounts-2023-24.pdf (As of January 2025)

How we modelled the risk

We quantified how shifts in consumer preferences towards more sustainable and less carbon intensive goods may impact demand for our products.

Consumer preference shifts have been considered at a country level.

Potential areas of impact


A shift away from products constructed using less sustainable raw materials, including animal-based products, towards organic, regenerative or recycled fabrics. This shift is expected to happen in the short to medium term, and more guickly in geographical regions where public attention on sustainable materials used to produce clothing is greater, such as Europe and North America. The shift will be more apparent in a lower temperature scenario, which assumes that a higher proportion of consumers will adopt more sustainable choices.

Key assumptions

- Consumer perception of Burberry products is assumed to be linked to the carbon footprint of sourcing raw materials, production and distribution
- · Scenario analysis is based on Burberry's future Product strategy and revenues, aligned with its updated strategic vision and projected raw material usage
- We have considered how shifts in consumer preferences may impact operating margin and net cash. This has been assessed in line with our current cost structure

Overseas Disclosure Examples: Unilever plc (UK, Materials, Consumer Discretionary, Pharmaceutical)

Scenario analysis was conducted at 1.5°C, 2°C, and 4°C, and two unique scenarios were used at 1.5°C. Calculate a wide range of business impacts for 2030, 2039, and 2050

- ✓ Scenario analysis is conducted at 1.5°C, 2°C, and 4°C, and two unique scenarios are used at 1.5°C
 - · Proactive Route requires gradual tightening of regulations from now on and relies on existing technology
 - Reactive Route will rely on future technology as regulations will rapidly tighten starting in 2030

Regarding the risks and opportunities of the main 1.5°C scenario, evaluate and disclose the business impact for 2030, 2039, and 2050, and describe the basis and assumptions for calculation

- Main risks/opportunities:
 - Impact of carbon taxes and voluntary carbon removal costs
 - > Impact of land use regulations on food crop production
 - Impact of rising energy prices on suppliers and manufacturing industries
 - Impact of water scarcity on crop yields
 - Impact of abnormal weather (increase in average temperature) on crop yields
 - Growth in the plant-based food sector

нісн	Financial quantification of asses	sed risks and opportunities	Ро	tential find profit in	ancial imp the year	
eed of Innovation	Regulatory and Market Risks	Key assumptions	Sensitivity	2030	2039	2050
Reactive route ■ Gradual regulation by	1. Carbon tax and voluntary carbon removal costs We quantified how high prices from carbon regulations and voluntary offset	 Absolute zero Scope 1 and 2 emissions by 2030 Scope 3 emissions exclude consumer use emissions Carbon price would reach 245 USD/ tonne by 2050, rising more aggressively 	ρ	-3.2	-5.2	-6.1
 2030, very aggressive post-2030 Continuation of historical societal trends until 2030, 	markets for our upstream Scope 3 emissions might impact our raw and packaging materials costs, our distribution costs and the neutralisation of our residual emissions post-2039.	 The price of carbon offsetting would reach 65 USD/ tonne by 2050 Offsetting 100% of emissions on and after 2039 	ſ	-2.4	-4.8	-6.1
then rapid pivotMajor reliance on technologies that are not	2. Land use regulation impact on food crop outputs We quantified how changing land use regulation to promote the conversion of	 By 2050, in a proactive scenario, land use regulation would increase prices by: Palm: ~28% Commodities and food ingredients: ~33% By 2050, in a reactive scenario, land use 	ρ	-0.8	-2.1	-5.1
yet proven to scaleHigher reliance on carbon removal technologies	current and future food crops to forests could drive reduced crop output and lead to increased raw material prices, impacting sourcing costs.	 regulation would increase prices by: Palm: ~10%; Commodities and food ingredients: ~11% 	ſ	-0.3	-0.7	-1.7

Source : Unilever, Annual Report and Accounts 2023, https://www.unilever.com/files/66bc4aea-608f-46ee-8da3-cde0ec8ebe90/unilever-annual-report-and-accounts-2023.pdf (As of January 2025)

- Aggressive and persistent regulation from today
- Dramatic changes to lifestyle from today, towards minimising climate impact and social inequality
- Reliance on available and proven technologies
- Lower reliance on carbon removal technologies

Table of contents

Main Part

	page
Chapter 1 Introduction	
1-1. Purpose of this practical guide	1-1
1-2. Impact of climate change on the environment and nature)
1-2-1. Climate change and corporate management	1-5
1-2-2. Overview of the TCFD recommendations	1-16
1-2-3. Overview of nature-related risks and	
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and executi	
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

3-4-2. Goal setting

Annondiv

Appendix	
_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and interna	tional)
and reference parameters and tools 1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP(in carbon pricing)	iternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-1
2-2-1. Consideration of price setting	2-20
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application ar	nd
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 redu	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	_
2-4-1. Frequently asked questions and example answers, glossary, and re information	eference 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
8-4. Target Setting: TOPPAN Holdings Inc.	3-40

.≓	IEA	 World Energy Outlook (WEO) 2022 Energy Technology Perspectives (ETP) 2023 		Parar					
ansiti	NGFS	 CA Climate Impact Explorer (Reference, Physical risk) IIASA Scenario Explorer 		arameters					
Fransition risk	PRI IPR	Forecast Policy Scenario (FPS)							
	SSP	 SSP (Shared Socioeconomic Pathways) Public Database Ver2.0 		referenced					
			AQUEDUCT Water Tool (WRI)	ed in past support					
Physi	_		Climate Change Knowledge Portal (World Bank)						
Physical risk	F	Physical risk tools used in past support projects (excerpt)	Climate Impact Viewer (AP-PLAT)	cases					
			Working on a warmer planet (ILO)	(FY 20 FY202 FY202					

Ways to obtain tools and literatures from IEA, NGFS, PRI, SSP

lssuing Organization	Tool Name	Data acquisition method	URL
IEA	World Energy Outlook (WEO) 2022	 Download the PDF report from the IEA homepage From the IEA homepage, download the excel for related data. There are 2 data, the free dataset and the extended data set 	 PDF : <u>https://www.iea.org/reports/world-energy-outlook-2023</u> Free Dataset : <u>https://www.iea.org/data-and-statistics/data-product/world-energy-outlook-2023-free-dataset-2</u>
	Energy Technology Perspectives (ETP) 2023	 From the IEA homepage, download the report 	 <u>https://www.iea.org/reports/energy-technology-perspectives-2023</u>
NOTO	NGFS IIASA Scenario Explorer	 Can be viewed through the NGFS homepage. The datasets are available for download as an excel %Must make an account 	 Web tool : <u>https://www.ngfs.net/ngfs-scenarios-portal/data-resources</u> Excel dataset : <u>https://data.ene.iiasa.ac.at/ngfs/#/downloads</u>
NGFS	(Reference、Physical risk) NGFS CA Climate Impact Explorer	 Can be viewed through the NGFS homepage	 Web tool : <u>https://climate-impact-explorer.climateanalytics.org/</u>
	1.5℃ RPS Scenario	 Download excel from the PRI homepage 	 <u>https://www.unpri.org/download?ac=15399</u> ※Download will start after clicking the link
PRI	Forecast Policy Scenario (FPS)	 Download excel from the PRI homepage 	 <u>https://www.unpri.org/download?ac=15398</u> ※Download will start after clicking the link
	FPS + Nature	Download excel from the PRI homepage	 <u>https://www.unpri.org/ipr-fps-nature-value-drivers</u> ※Download will start after clicking the link
SSP	SSP Public Database Ver2.0	Can be viewed through the web tool on the IIASA homepage	 <u>https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10</u>

	ltem	Parameter	Source	Reference: FY 2020~2021 supported companies
	Carbon tax		ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Shin-Etsu Chemical, Mitsui Mining & Smelting, YASKAWA Electric Corporation, SCSK Corporation, GUNZE, Nishi- Nippon Railroad, Nippon Paper Industries, Fuji Oil Company, Maruha Nichiro Corporation, UACJ Corporation	
	Carbon price	Border carbon	 IEA WEO2021 Ministry of the Environment "Recent Developments in Carbon Tax and Border Adjustment Measures" ICAP (Average of EU-ETS in 2020) 	Nichiro Corporation, UACJ Corporation Fuji Oil Company, UACJ Corporation ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting, SCSK Corporation, GUNZE, Nishi-Nippon Railroad, Nippon Paper Industries, UACJ Corporation Kyushu Railway Company, Shin-Etsu Chemical, YASKAWA Electric Corporation, SCSK Corporation, Nippon Paper Industries, Fuji Oil Company, UACJ Corporation
		Electricity price	• IEA WEO2018, WEO2020	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Shin-Etsu Chemical, Mitsui Mining & Smelting, YASKAWA Electric Corporation, SCSK Corporation, GUNZE, Nishi- Nippon Railroad, Nippon Paper Industries, Fuji Oil Company, Maruha Nichiro Corporation, UACJ Corporation ax and Border Fuji Oil Company, UACJ Corporation ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, UACJ Corporation ax and Border Fuji Oil Company, UACJ Corporation ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting, SCSK Corporation, GUNZE, Nishi-Nippon Railroad, Nippon Paper Industries, UACJ Corporation roward Kyushu Railway Company, Shin-Etsu Chemical, YASKAWA Electric Corporation, SCSK Corporation, Nippon Paper Industries, Fuji Oil Company, UACJ Corporation on" (October Fuji Oil Company BLIC of ASKUL Corporation Nishi-Nippon Railroad Nishi-Nippon Railroad ant Transfer Tax TTPP11 Nippon Paper Industries
	Carbon emissions targets/policies in each country	Target values for emissions	 Ministry of the Environment's "Draft Japanese Commitments," "Toward Significant Reductions in Greenhouse Gases by 2050" IEA ETP2020 Target set by countries Ministry of Foreign Affairs of Japan "Climate Change: Japan's Emission Reduction Targets" Ministry of Foreign Affairs of Japan "Domestic and International Developments Concerning Carbon Neutrality in 2050" Agency for Natural Resources and Energy "Basic Energy Plan" UNFCCC "Thailand's Updated Nationally Determined Contribution" (October 2020) 	Corporation, SCSK Corporation, Nippon Paper Industries, Fuji Oil
		Target unmet penalty amount	• IEA WEO2021	Fuji Oil Company
		Annual target of forest area decrease	 Indonesia NDC "First Nationally Determined Contribution REPUBLIC of INDONESIA" 	ASKUL Corporation
		Spread of environmentally friendly vehicles (EVs and FC buses)	• IEA WEO2020, NZE2050	Nishi-Nippon Railroad
	Carbon emissions targets/policies in each country (Logging tax)	Logging tax	 Forestry Agency "Forest Environment Tax and Forest Environment Transfer Tax Customs and Tariff Bureau, Ministry of Finance "Overview of the TPP11 Agreement (CPTPP) (tax rate differences, etc.) Forestry Agency "Provision of Information on Legally Logged Timber, etc. 	Nippon Paper Industries

	Item	Item Parameter Source		Reference: FY 2020~2021 supported companies
	Carbon emissions targets/policies in each country (Plastic Regulation)	Recycled plastic usage rate	 EU Government Plastic Recycling and Reuse Association, European Plastics Strategy JPCA EU Technical Expert Group (TEG), "Taxonomy Report Technical Annex" 	ASKUL Corporation, Shin-Etsu Chemical, GUNZE, Fuji Oil Company
-		Power Generation Mix (Japan)	 IEA WEO2019,2020, 2021 PRI IPR FPS2019 Japanese Government Agency for Natural Resources and Energy "Outline of the Basic Energy Plan (Draft 2)" 	Kyushu Railway Company, Mitsui Mining & Smelting, YASKAWA Electric Corporation, SCSK Corporation, Nippon Paper Industries
Changes in the energy mix Fuel price increase/decrease rate IEA WEO2020, NZE2050 Nishi-Nippon Railroad		Nishi-Nippon Railroad		
		Oil supply	• IEA WEO2021	Fuji Oil Company
Transition risk	Dissemination of renewable energy and energy-saving technologies	ZEV ratio	 IEA ETP2017 Shinichiro Fujimori et al. "The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century" 	SASKUL Corporation, Kyushu Railway Company, Shin-Etsu Chemical
		EV rate of new vehicles	IEA Global EV Outlook2021	SCSK Corporation, Nippon Paper Industries
		EU Inventory	• IEA WEO2021	UACJ Corporation
1		Global Telecommunications Volume Trends	 Cisco "Global IP Traffic Forecast by Cisco VNI, 2018-2023" Nomura Research Institute, "Nomura Research Institute, Outlook for ICT and Media Market Size and Trends through FY2025" SMART CITY PROJECT 	SCSK Corporation
		Spread of environmentally friendly trains	 East Japan Railway Company "Production of hybrid vehicle (fuel cell) test vehicle using hydrogen as energy source and implementation of demonstration test" June 2019 	Kyushu Railway Company
	next-generation technologies	Change in the number of passengers between private cars and buses due to decarbonization	• IEA NZE2050	Nishi-Nippon Railroad

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Recycled Aluminum Utilization Rate	 IAI "1.5 DEGREES SCENARIO A MODEL TO DRIVEEMISSIONS REDUCTION" National Institute for Environmental Studies, "Estimating the Impacts of Carbon Constraints on Metal Production and Use on a Global Scale" (2021) 	UACJ Corporation
		Aluminum price	World Bank "World Bank Commodities Forecast"	UACJ Corporation
		Copper demand forecast	 Sebastiaan Deetman et al "Scenarios for demand growth of metals in electricity generation technologies, cars and electronic appliances" 	Mitsui Mining & Smelting
		Zinc demand forecast	World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future"	Mitsui Mining & Smelting
Tra		Lead demand forecast	World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future"	Mitsui Mining & Smelting
Fransition risk	Changes in important products/ prices	cobalt, nickel, and platinum demand forecast	World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future"	Mitsui Mining & Smelting
ж К		Aluminum demand forecast	 CM group, IAI "AN ASSESSMENT OF GLOBAL MEGATRENDS AND REGIONAL AND MARKET SECTOR GROWTH OUTLOOK FOR ALUMINIUM DEMAND" (2020) 	UACJ Corporation
		Fuel price (Oil price, coal price, natural gas price)	 IEA WEO2020, NZE2050, WEO2021 Agency for Natural Resources and Energy "Basic Energy Plan" 	ASKUL Corporation, Kyushu Railway Company, Shin-Etsu Chemical, Mitsui Mining & Smelting, GUNZE, Nishi-Nippon Railroad, Fuji Oil Company, UACJ Corporation
		Iron price	2ii "The Transition Risk-o-Meter Reference Scenarios for Financial Analysis"	Kyushu Railway Company
		Energy intensity	Japanese government	Shin-Etsu Chemical
		Smart city market size and M2M traffic	 SMART CITY PROJECT "Smart Cities, the world's most important national strategy" Statista "Smart City Market revenue worldwide 2019 – 2025, by segment" 	Shin-Etsu Chemical

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Industrial robot market size in major countries	Japanese Government and others	Shin-Etsu Chemical
		Sales of sustainable certified product	Nielsen "Product Insider"	ASKUL Corporation, Nippon Paper Industries
		Purchase intention by ethical consumption	 Dentsu, "Ethical Consumption Awareness Survey 2020" Deloitte, "Millennial Generation Z Annual Survey 2021" 	GUNZE, UACJ Corporation
		Improvement rate of energy consumption intensity (Industrial sector)	• IEA WEO2019	YASKAWA Electric Corporation
Ŧ		Market size of industrial robots	 IEA WEO2019 International Federation of Robotics, World Robotics 2019 Industrial Robots 	YASKAWA Electric Corporation
Transition risk	Changes in important products/ prices	Market size of AC servos for industrial robots	 Fuji Keizai "2020 Featured Mechatronics Parts Market Survey" IEA WEO2019 	YASKAWA Electric Corporation
risk		Market size of industrial inverters	 Research Station LCC, Global market forecast for inverters Estimated from IEA WEO2019 	YASKAWA Electric Corporation
		Neodymium dysprosium demand forecast	 Sebastiaan Deetman et al "Scenarios for demand growth of metals in electricity generation technologies, cars and electronic appliances" 	YASKAWA Electric Corporation
		Server Market Trends	 IEA EV Outlook2021 IDC Japan "Server Market Trend in Japan in FY2020" 	SCSK Corporation
		Migratory Tuna Catch	 Johann D. Bell et al "Pathways to sustaining tuna-dependent Pacific Island economies during climate change" 	Maruha Nichiro Corporation
		Bait fish stocks	 Ministry of Agriculture, Forestry and Fisheries "Future Prospects for Adaptation to Climate Change Impacts in FY2008" 	Maruha Nichiro Corporation
		Fish size	 Global Change Biology "Sound physiological knowledge and principles in modeling shrinking of fishes under climate change" (August 2017) 	Maruha Nichiro Corporation

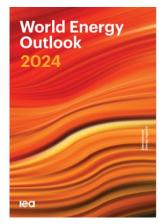
	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Changes in the volume of air passenger	2ii "The Transition Risk-o-Meter Reference Scenarios for Financial Analysis"	Kyushu Railway Company
	Changes in customer reputation / behavior	Number of engine- powered vehicles on the road	• IEA ETP2017	Fuji Oil Company
Tra		Increase / decrease in rent due to environmental performance	 Xymax "Economic analysis of environmental management" Smart Wellness Office Research Committee "Improving the sustainability of environmental real estate and its added value" Japan Real Estate Institute "Investors' perceptions of real estate ESG investment" JRE "Economy of ESG Investment" (DBJ FY2019 Seminar "Sustainability and ESG Investment in Real Estate- GRESB evaluation result announcement and real estate ESG Investment outlook-") 	ORIX Asset Management Corporation
Transition risk	Compliance with GHG emission regulations	Energy intensity of buildings	 IEA ETP2017 MLIT "Energy consumption reduction targets in global warming countermeasure plans based on the Paris Agreement", p.1 	ORIX Asset Management Corporation
		Zero emission target of Tokyo	• Tokyo	ORIX Asset Management Corporation
		Emission factor for grid electricity	 IEA WEO2020 Ministry of Economy, Trade and Industry "Basic Energy Plan" RITE "Scenario Analysis of Carbon Neutrality in 2050" 	ORIX Asset Management Corporation, Fuji Oil Company
		Mandatory introduction of ZEB / ZEH (Government goal)	 IEA ETP2017 Agency for Natural Resources and Energy General Energy Policy (July 2018) METI 	ORIX Asset Management Corporation

Parameters referenced in past support cases **Physical risk (1/3)**

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Loss of labor productivity due to heat stress in the industrial sector	ILO "Working on a warmer planet" (2019)	Mitsui Mining & Smelting, GUNZE, UACJ Corporation
		Increase of hot summer days	WRI "The Aqueduct Global Flood analyzer"World Bank "Climate Change Knowledge Portal"	ASKUL Corporation, Mitsui Mining & Smelting, UACJ Corporation
		Increase of temperature	World Bank "Climate Change Knowledge Portal"	ASKUL Corporation, Kyushu Railway Company
		Relationship between temperature rise and electricity demand	 IEEJ General Information Processing Center, Mie University "Visualization of Air Conditioning Efficiency by Power Analysis of Server Room" 	Kyushu Railway Company, SCSK Corporation
Physical risk	Increases in the average temperature	Relationship between temperature rise and air conditioner sales	 World Bank "Climate Change Knowledge Portal" (Temperature rise) Ministry of the Environment, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Agriculture, Forestry and Fisheries, Ministry of Land, Infrastructure, Transport and Tourism, Japan Meteorological Agency, "Climate Change Observation, Prediction and Impact Assessment Integrated Report 2018 - Climate Change in Japan and its Impacts" 	UACJ Corporation
ll risk		Relationship between temperature rise and demand for beverage products	 National Observatory of Athens "The Impact of Climate Change on the Pattern of Demand for Bottled Water and Non-Alcoholic Beverages" (2014) 	UACJ Corporation
		Increase in Aluminum Demand by Sector	 CM Group, IAI "AN ASSESSMENT OF GLOBAL MEGATRENDS AND REGIONAL AND MARKET SECTOR GROWTH OUTLOOK FOR ALUMINIUM DEMAN" (2020) 	UACJ Corporation
		Track buckling rate	 ELSEVIER "Impacts of climate change on operation of the US rail network" (2017) 	Kyushu Railway Company
		Air conditioning cost	IEA "The Future of Cooling"	ASKUL Corporation
		Forest fire outbreak situation	• AP-PLAT	ASKUL Corporation
		Forest fire incidence (Vietnam)	 Forest and Grass Fire Risk Assessment for Central Asia under Future Climate Scenarios 	Nippon Paper Industries

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Forest fire incidence (Brazil)	 Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon 	Nippon Paper Industries
		Forest fire incidence (Japan)	Forestry Agency, "Recent Mountain Disasters"	Nippon Paper Industries
		Temperature rise: Underwear Sales	World Bank "Climate Change Knowledge Portal"	GUNZE
		Temperature rise: Cotton Cultivation	FAO "The future of food and agriculture Alternative pathways to 2050"	GUNZE
		Increase in insect infestation (Japan, Vietnam)	The Potential Global Distribution of the White Peach Scale Pseudaulacaspis pentagona (Targioni Tozzetti) under Climate Change	Nippon Paper Industries
Physical risk	Increases in the average temperature	Probability of heavy rainfall (Japan)	 Ministry of Education, Culture, Sports, Science and Technology and Japan Meteorological Agency "Climate Change in Japan 2020" (December 2020) 	Nippon Paper Industries
al risk		Probability of heavy rainfall (Vietnam)	 Projected changes in summer precipitation over East Asia with a high-resolution atmospheric general circulation model during 21st century 	Nippon Paper Industries
		Probability of heavy rainfall (Brazil)	 Assessment of multi-model climate projections of water resources over South America CORDEX domain 	Nippon Paper Industries
		Rise in sea water temperature	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
		Changes in dissolved oxygen in seawater	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
		Ocean acidification	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
	Sea level rise	Sea level rise	 IPCC "Fifth Report", "1.5°C Special Report" 	SCSK, Nippon Paper Industries

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Flood damage in urban areas	WRI "The Aqueduct Global Flood Analyzer"	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting
		Frequency of floods, Flow rate	 Ministry of Land, Infrastructure, Transport and Tourism, "Proposals for Flood Control Plans Based on Climate Change" 	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting, GUNZE, Nishi-Nippon Railroad, Fuji Oil Company, Maruha Nichiro Corporation
		Flood occurrence probability (Japan)	 Ministry of Land, Infrastructure, Transport and Tourism, "Impacts of Climate Change" 	SCSK Corporation, Nippon Paper Industries, UACJ Corporation
	Increasing extreme weather conditions (typhoons, heavy rains, sediment, storm surges, etc.)	Occurrence of typhoons and cyclones	 MOE JMA and Others [Climate Change Observation / Forecast and Impact Assessment Integrated Report 2018 -Japan's Climate Change and Its Impact-J 	ORIX Asset Management Corporation, Mitsui Mining & Smelting, Maruha Nichiro Corporation
Physical risk		Number of days per year of torrential rainfall	 Tokyo District Meteorological Observatory Website World Bank [Climate Change Knowledge Portal] 	Nishi-Nippon Railroad
		Average sea level rise	 IPCC "Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development" MOE-JMA "Outline of IPCC Fifth Assessment Report -Working Group 1 Natural Science Basis-" (2014) (p.41) 	ORIX Asset Management Corporation, Mitsui Mining & Smelting
		Water risk by base (flood, drought)	 WRI "The Aqueduct Global Flood analyzer" Technical Study Group on Flood Plans Based on Climate Change "Study on Flood Control Plans Based on Climate Change" 	Shin-Etsu Chemical, YASKAWA Electric Corporation, GUNZE, UACJ Corporation
		Sediment disaster occurrence probability	A-PLAT, Climate Change Adaptation Information Platform	Kyushu Railway Company
		Domestic Disaster Response Product Market Trends	Yano Research Institute "Research on Disaster Prevention Food Market" (2020)	Nippon Paper Industries


What is the International Energy Agency (IEA)?

Organization established in 1974 after the first oil crisis to avert oil supply crises (to establish a stable energy supply and demand structure) of the member countries.

iea

- The objective is to promote energy security through collective response by members to the physical disruptions of oil supply.
- Energy-related surveys, statistical compilation, and publication of various reports and books.
- There are 30 members, including Japan.

World Energy Outlook (WEO)

- A report on energy supply and demand published every autumn.
- World Energy Outlook includes medium and long-term energy market forecasts.

Energy Technology Perspectives (ETP)

- Describes the process of energy technology innovation.
- Focusing on opportunities and challenges for expanding and accelerating clean energy technologies.
- Parameters on resources and supply chain are introduced.

Source: IEA, World Energy Outlook 2024 (October 2024), IEA Energy Technology Perspective 2024 (October 2024)

Despite ongoing geopolitical tensions, clean energy adoption accelerates globally. Investment in developing nations is key to meeting climate targets.

WEO2022 Report Overview

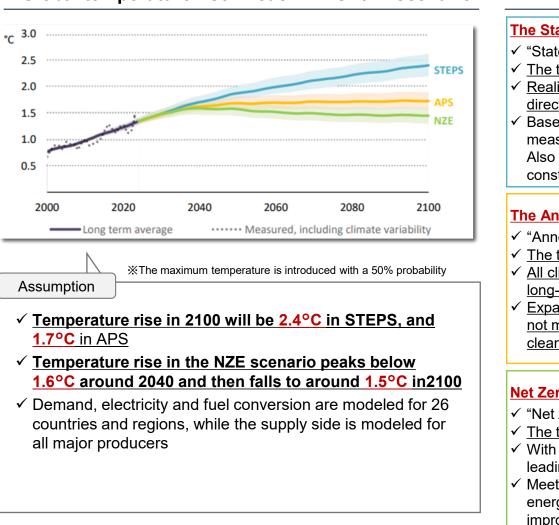

- ✓ Energy markets remain unstable, with heightened geopolitical risks. The ongoing tensions in the Middle East and the continued impact of the Ukraine war have exposed vulnerabilities in energy supply networks14.
- ✓ The clean energy transition is accelerating, with rapid expansion of renewable energy expected. By 2030, global renewable energy generation capacity is projected to reach 10,000 GW, and electric vehicles are predicted to achieve a 50% global market share58.
- ✓ However, current policies are projected to result in a 2.4°C temperature rise by 2100, presenting significant challenges to achieving climate goals. Substantial increases in clean energy investments for developing countries are necessary to meet these targets58.
- ✓ In energy markets, we observe slowing growth in oil demand, expansion of LNG export capacity, and a surge in electricity demand. Sustainable energy transition requires international cooperation to improve investment conditions and facilitate technology transfer, with improving electricity access in developing countries being a crucial challenge

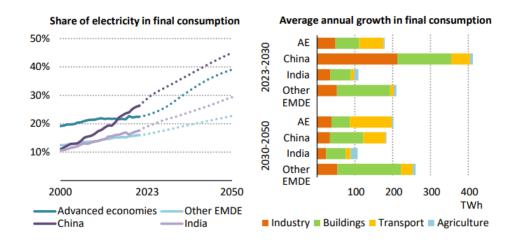
Table of Contents

. Overview and key findings		emerging market and developing economies?		4.3 Sensitivity analyses relative to the STEPS
1.1. Scenario overview	2.	Setting the scene		trajectory
1.2 What do fractured geopolitics mean for the		2.1. Context for the World Energy Outlook-2024		4.4 Uncertainties in oil demand
future of energy?		2.2. WEO scenarios		4.5 Uncertainties in natural gas demand
1.3 Are EVs hitting speed limits?	3.	Pathways for the energy mix		4.6 Uncertainties in electricity demand
1.4 How fast might demand for electricity		3.1. Introduction	5.	Security, affordability and sustainability
increase?		3.2. Overview		5.1 Introduction
1.5 Is clean power generation growing fast		3.3. Total final energy consumption		5.2 Energy security
enough?		3.4. Electricity		5.3 Affordability and people-centred transitions
1.6 There is a wave of new LNG coming: where		3.5. Fuels		5.4 Sustainability
will it go?		3.6. Key clean energy technology trends		5.5 Investment and finance
1.7 What will it take to achieve energy access	4.	Exploring uncertainties in the Outlook	6.	Regional insights
goals by 2030?		4.1 Introduction	An	nexes
1.8 How to scale up clean energy investment in		4.2 Exploring the uncertainties		

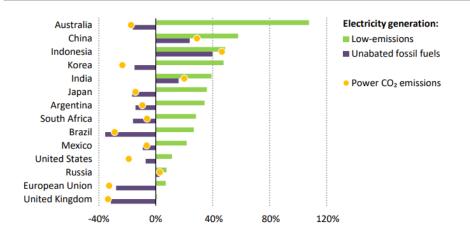
IEA WEO2024: Types of Scenarios

3 major scenarios were evaluated: NZE, which is a prescriptive scenario calculated backward from a specific results, and APS and STEPS, which are exploratory scenarios designed without targeting specific results

Global temperature rise in each WEO2024 scenario


Types of scenarios

The Stated Policies Scenario (STEPS)	Exploratory							
 ✓ "Stated Policies Scenario ✓ <u>The temperature rise in 2100 will be 2.4°C</u> ✓ <u>Realistically examines the current policy situation and indicates the direction of the energy system in the absence of new policies</u> ✓ Based on detailed sector-by-sector review of the policies and measures that are in place or under development in variety of areas. Also assesses relevant regulatory, market, infrastructure and financial constraints. goals 								
The Announced Pledges Scenario (APS) ✓ "Announced Pledges Scenario" ✓ The temperature rise in 2100 will be 1.7°C ✓ All climate change commitments are accounted, including NDC long-term net zero targets. Assumes all targets are met on-time								
 Expanded the analysis to consider the impact on countries that have not made ambitious long-term commitments when cost reductions in clean energy technologies are accelerated 								
Net Zero Emissions by 2050 Scenario (NZE)	Prescriptive							
 Net Zero Emissions by 2050 Scenario (NZE) ✓ "Net zero emission scenario" ✓ <u>The temperature rise in 2100 will be 1.5°C</u> ✓ With a rapid increase in clean energy policies and investments, leading developed countries will reach net zero faster than others ✓ Meet key elements of the UN Sustainable Development Goals for energy: <u>achieving universal access to energy and significantly improving air quality by 2030</u> 								


IEA WEO2024: Clean power generation

Global electricity demand is expected to nearly double by 2050, but the growth in clean power generation is not keeping pace with the demand, leading to increased use of coal and natural gas in countries such as China and Indonesia.

Electricity in total final consumption and demand growth in the STEPS to 2050

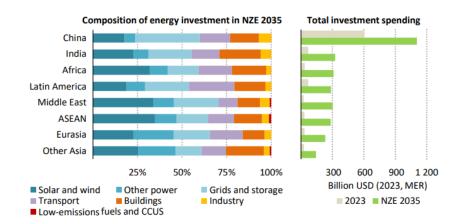
Change in electricity generation by source and power sector CO2 emissions in selected regions, 2018-2023

✓ In the STEPS scenario, global electricity demand is expected to nearly double by 2050, rising from 26,000 TWh in 2023 to 50,000 TWh. The transport sector is projected to see the fastest growth, driven by the increasing share of EVs. Emerging markets and developing countries will account for about 80% of the demand growth by 2030, with China alone contributing over 45%. *Other EMDE : Developing countries other than China

Clean power generation is not keeping pace with demand. In some emerging markets and developing countries, lowemission sources failed to meet demand growth from 2018 to 2023, leading to increased coal and natural gas use. As China's electricity demand far exceeds other countries, the speed of its clean energy transition is crucial.

Source : IEA, World Energy Outlook 2024 (October 2024) - Figure 1.10 > Electricity in total final consumption and demand growth in the STEPS to 2050 (P.40) , Figure 1.15 > Change in electricity generation by source and power sector CO2 emissions in selected regions, 2018-2023 (P.47)

IEA WEO2024: Clean energy investment


Although investments in clean energy are expanding, the NZE scenario requires clean energy investments to double in advanced economies and China and increase more than sixfold in other developing countries by 2035

Advanced economies China Other developing economies 2 000 Billion USD (MER, 2023) 2x 6.5x 1 500 1.9x 1 000 500 APS NZE APS NZE APS NZE 2023 2023 2023 2035 2035 2035

Clean energy investment by region in the APS and NZE Scenario to 2035

- The recent increase in clean energy investments has been driven primarily by advanced economies and China, accounting for 85% of the total
- In contrast, investments from other emerging markets and developing countries, which represent two-thirds of the global population, remain at just 15%

Clean energy spending by type and by selected regions in the NZE Scenario, 2023 and 2035

*Other EMDE: Developing countries other than China

- In the NZE scenario, clean energy investments must double in advanced economies and China and grow sixfold in other developing countries by 2035
- ✓ To close the investment gap, mobilizing capital, ensuring policy certainty, reliable data, strong governance, and expanding concessional international funding are essential

While IEA's calculated carbon prices by country show no major revisions from last year, 2035 values have been newly added

IEA report		WEO2023			WEO2		ISD/t-CO2
Carbon prices	2030 2040 2050			2030	2040	2050	
Stated Policies Scenario (STEPS)	2000	2040	2030	2000	2035	2040	2000
Canada	130	150	155	126	126	126	126
Chile, Colombia	13	21	29	21	24	28	28
China	28	43	53	39	43	46	52
EU	120	129	135	140	145	149	158
South Korea	42	67	89	60	65	73	89
Announced Pledges Scenario (APS)							
Developed countries (countries with Net Zero pledges including OECD countries, except for Mexico)	135	175	200	135	160	175	200
Emerging market and developing economies with net zero emissions pledges (includes China, India, Indonesia, Brazil and South Africa)	40	110	160	40	65	110	160
Other emerging market countries and developing countries	-	17	47	-	6	17	47
Net Zero Emissions by 2050 Scenario (NZE)			·			i	
Developed countries (countries with Net Zero pledges)	140	205	250	140	180	205	250
Emerging market countries and developing countries (countries with Net Zero pledges, including China, India, Indonesia, Brazil, and South Africa)	90	160	200	90	125	160	200
Selected emerging market and developing economies (without net zero emissions pledges)	25	85	180	25	50	85	180
Other emerging market countries and developing countries	15	35	55	15	25	35	55

[Scenario types]

• Net Zero Emissions by 2050 Scenario (NZE): A scenario for global achievement of net zero emissions by 2050

Source : IEA, World Energy Outlook 2023 (October 2023) - Table B.2 CO2 prices for electricity, industry and energy production in selected regions by scenario (P.297), IEA, World Energy Outlook 2024 (October 2024) - Table B.2 CO2 prices for electricity, industry and energy production in selected regions by scenario (P.329)

[•] Stated Policies Scenario (STEPS): A scenario for cases where policy takers do not make major changes to the country's course, which is not based on the premise that all targets announced by the governments of each country will be met

Announced Pledges Scenario (APS): A scenario that assumes that all climate change-related pledges by governments around the world will be met completely and on time

Comparison with WEO2023: Fuel prices for each scenario (1/2)

While IEA's calculated oil, natural gas, and coal prices by country show no major changes from last year, 2040 values have been newly added

				Unit (Oil price) Unit (Natural gas pri	: USD/barrel		
IEA report	WEO20)23	WEO2024				
Oil prices	2030	2050	2030	2040	2050		
Stated Policies Scenario (STEPS)	85	83	79	77	7		
Announced Pledges Scenario (APS)	74	60	72	63	5		
Net Zero Emissions by 2050 Scenario (NZE)	42	25	42	30	2		
Natural gas prices							
Stated Policies Scenario (STEPS)							
US	4.0	4.3	3.9	4.1	4		
EU	6.9	7.1	6.5	7.6	7		
China	8.4	7.7	7.2	8.2	8		
Japan	9.4	7.8	8.3	8.8	8		
Announced Pledges Scenario (APS)							
US	3.2	2.2	3.2	3.0	2		
EU	6.5	5.4	6.0	5.2	5		
China	7.8	6.3	6.9	6.2	6		
Japan	8.3	7.4	6.8	6.1	6		
Net Zero Emissions by 2050 Scenario (NZE)							
US	2.4	2.0	2.1	2.0	2		
EU	4.3	4.1	4.4	4.1	4		
China	5.9	5.3	5.0	4.8	4		
Japan	5.5	5.3	5.0	4.8	4		

Source :IEA, World Energy Outlook 2023 (October 2023) - Table 2.2 Fossil fuel prices by scenario (P.96), IEA, World Energy Outlook 2024 (October 2024) - Table 2.3 Wholesale fossil fuel prices by scenario (P.90)

Comparison with WEO2023: Fuel prices for each scenario (2/2)

While IEA's calculated oil, natural gas, and coal prices by country show no major changes from last year, 2040 values have been newly added

					Unit: USD/tonne	
IEA report	WEO	2023		WEO2024		
Coal prices	2030	2050	2030		2050	
Stated Policies Scenario (STEPS)						
US	46	41	51	42	2	
EU	67	69	68	69	(
China	98	77	105	86	٤	
Japan	96	80	101	88	8	
Announced Pledges Scenario (APS)						
US	43	26	42	31	2	
EU	68	53	64	51	2	
China	80	59	81	66	(
Japan	79	62	78	67		
Net Zero Emissions by 2050 Scenario (NZE)						
US	27	23	28	23	:	
EU	57	43	57	43		
China	65	47	66	53		
Japan	64	49	64	54		

Source :IEA, World Energy Outlook 2023 (October 2023) - Table 2.2 Fossil fuel prices by scenario (P.96), IEA, World Energy Outlook 2024 (October 2024) - Table 2.3 Wholesale fossil fuel prices by scenario (P.90)

							-Legend	- te	ms with ex	tracted para	imeters	
ter			Time	Horizon				Co	ountry/Regio	Data Type	Dono	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global energy mix by scenario to 2050		0	0			0	0	0		Charged	Figure 1.1 (p.24)
	Total final consumption per capita and per unit of GDP by scenario, 2000-2050		0	0			0		0		Charged	Figure 1.2 (p.25)
	Total final consumption by energy source in selected sectors by scenario, 2023 and 2050		0	0			0	0			Charged	Figure 1.3 (p.27)
	CO2 emissions and GDP per capita in selected countries/regions in the STEPS and APS		0	0		0	0	0	Ο		Charged	Figure 1.4 (p.28)
	Natural gas and crude oil imports to Asia and Europe in the STEPS and APS		0	0			0		Ο		Charged	Figure1.5 (p.30)
	Oil and natural gas price by scenario, 2010-2050		0	0			0		Ο		Charged	Figure 1.6 (p.31)
Ch.1	Share of top-three suppliers of selected critical minerals and clean technologies based on announced projects, 2023 and 2030		0	0	0				Ο		Charged	Figure 1.7 (p.33)
	Selected support policies for electric vehicles		0	0	0	0	0		Ο	0	Charged	Table 1.1 (p.35)
	Global electric light-duty vehicle sales in the STEPS compared with other EV outlooks, 2023-2050		0	0	0		0	0			Charged	Figure 1.8 (p.36)
	Oil demand in road transport in the STEPS and savings from EVs, 2010-2035		0		0			0			Charged	Figure 1.9 (p.38)
	Electricity in total final consumption and demand growth in the STEPS to 2050		0	0			0		Ο		Charged	Figure 1.10 (p.40)
	Electricity demand growth by sector in the STEPS and selected buildings sector sensitivity analysis, 2023-2035		0	0					0		Charged	Figure 1.11 (p.41)

								-Legend	- te	ms with ext	tracted para	imeters
ter			Time	Horizon				C	ountry/Regio	Data Type	Dere	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Electricity demand growth from selected clean energy technologies by region and scenario, 2023-2035		0	0					0		Charged	Figure 1.12 (p.43)
	Peak electricity demand by driver and region in the STEPS, 2023-2035		0	0					Ο		Charged	Figure 1.13 (p.44)
	Global installed clean power capacity and electricity generation, 2010-2023		0					0			Charged	Figure 1.14 (p.46)
	Change in electricity generation by source and power sector CO2 emissions in selected regions, 2018-2023		0	0					Ο	0	Charged	Figure 1.15 (p.47)
Ch.1	Electricity generation by source in advanced economies and EMDE in the STEPS, 2023-2030		0	0	0				0		Charged	Figure1.16 (p.48)
CII. I	Global clean power generation increase by source in the STEPS and NZE Scenario, 2023-2035		0	0				0			Charged	Figure 1.17 (p.49)
	LNG export capacity additions by country to 2030		0	0	0				Ο		Charged	Figure 1.18 (p.51)
	LNG demand by region and scenario relative to existing and under construction export capacity, 2023-2050		0	0	0	0	0		Ο	0	Charged	Figure 1.19 (p.52)
	Factors that could lead to continued natural gas demand growth above the levels of the STEPS to 2040		0	0	0	0		0			Charged	Figure 1.20 (p.54)
	Population without access to modern energy 2000-2023 and in the STEPS to 2030		0	0	0				Ο		Charged	Figure 1.21 (p.55)
	Population without electricity access in 2023, and historical best versus progress in the NZE Scenario by country/region, 2024-2030		0	0	0				Ο		Charged	Figure 1.22 (p.57)
	Population without clean cooking access in 2023, and historical best versus progress in the NZE Scenario by country/region, 2024-2030		0	0	0				0		Charged	Figure 1.23 (p.58)

IEA WEO2024 Parameter List Chapter 1 (3/3), Chapter 2 (1/2)

								-Legend	- te	ms with ex	tracted para	meters
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Domo
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Average annual capital investment for energy access by scenario, and private capital in energy access projects, 2013-2019		0	0	0				0		Charged	Figure 1.24 (p.60)
	Estimated energy investment by type in selected regions, 2024	0		0					0		Charged	Figure 1.25 (p.62)
Ch.1	Clean energy investment by region in the APS and NZE Scenario to 2035		0	0					0		Charged	Figure 1.26 (p.62)
	Clean energy spending by type and by selected regions in the NZE Scenario, 2023 and 2035		0	0					0		Charged	Figure 1.27 (p.63)
	Selected health, environment and employment indicators in emerging market and developing economies, 2023-2030		0	0	0				Ο		Charged	Figure 1.28 (p.64)
	Global total energy supply, 2010-2023		0	0				Ο			Charged	Figure 2.1 (p.70)
	Energy-related CO2 emissions and global average temperature rise above pre-industrial levels, 1950-2023		0	0				Ο			Charged	Figure 2.2 (p.72)
	Inflation drivers in the Eurozone and United States, 2019-2024		0	0					0		Charged	Figure 2.3 (p.73)
Ch.2	Global population, GDP and clean energy investment, 2023		0	0				Ο			Charged	Figure 2.4 (p.75)
	Share of world energy demand voting in national or regional elections, 2024	0		0				0	0		Charged	Figure 2.5 (p.76)
	Oil import share from the Middle East in selected markets		0	0					0		Charged	Figure 2.6 (p.77)
	Share of clean energy technology supply chains, 2023	0	0						0		Charged	Figure 2.7 (p.77)

					-Legend	- te	ms with ext	racted para	meters			
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Demo
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global energy-related CO2 emissions covered by policy changes, 2022 and 2023		0	0				0			Charged	Figure 2.8 (p.81)
	Government support announced for clean energy and energy affordability by budget allocation year, 2020 to first- half 2024		0	0	0			0			Charged	Figure 2.9 (p.82)
	Global direct government incentives for domestic manufacturing as part of clean energy support, 2020-2024		0	0				0			Charged	Figure 2.10 (p.83)
	Domestic direct manufacturing incentive schemes in selected governments enacted since 2020		0	0					Ο	Ο	Charged	Table 2.1 (p.84)
	Lifetime capital and operating costs of consumer equipment purchased in selected countries, 2023	0		0					Ο		Charged	Figure 2.11 (p.86)
Ch.2	GDP average growth assumptions by region		0	0			0		Ο	Ο	Charged	Table 2.2 (p.88)
	Projected change of population in urban and rural areas by region, 2023 to 2050		0	0			0		Ο		Charged	Figure 2.12 (p.88)
	Fertility rates by country and region, 2023	0		0					Ο	0	Charged	Figure 2.13 (p.89)
	Wholesale fossil fuel prices by scenario		0	0	0	0	0		0	0	Charged	Table 2.3 (p.90)
	Average natural gas, gasoline and electricity wholesale and retail prices in selected regions, 2022	0		0					0		Charged	Figure 2.14 (p.93)
	IEA indices for clean energy and upstream oil and gas, and global average price of selected clean energy technologies		0	0				0			Charged	Figure2.15 (p.94)
	Global average lithium-ion battery pack price and share of cathode raw material cost, 2013-2023		0	0				0			Charged	Figure2.16 (p.95)

				-Legend	- te	ms with ext	racted para	meters				
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Dece
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global total energy supply by source and fossil fuel share by scenario, 2000-2050		0	0			0	0			Charged	Figure3.1 (p.100)
	Global annual energy intensity improvements, 2000-2030, and cumulative energy savings by lever and scenario, 2023-2030		0	0	0			0			Charged	Figure3.2 (p.102)
	Global installed capacity of renewables, 2010-2030, and emissions reductions by scenario, 2023-2030		0	0	0			Ο			Charged	Figure3.3 (p.103)
	Total energy-related CO2 emissions and from coal use in the Stated Policies Scenario, 1990-2030		0	0	0			0			Charged	Figure 3.4 (p.105)
	Total final consumption by end-use sector and scenario, 2023, 2030 and 2050		0	0	0		0	Ο	Ο		Charged	Figure 3.5 (p.106)
Ch.3	CO2 emissions and emissions intensity by end-use sector and scenario, 2023, 2030 and 2050		0	0	0		0	Ο			Charged	Figure3.6 (p.107)
011.0	Total final consumption by fuel and scenario, 2023-2050		0	0			0	Ο			Charged	Figure 3.7 (p.108)
	Share of electricity in total final consumption by end-use sector and scenario, 2010-2050		0	Ο			0	Ο			Charged	Figure 3.8 (p.109)
	Energy demand in transport by fuel and scenario, 2023- 2050		0	0	0		0	0			Charged	Figure 3.9 (p.110)
	Low-emissions fuels in transport by type in the Stated Policies and Announced Pledges scenarios, 2010-2050		0	0			0	0			Charged	Figure 3.10 (p.111)
	E-bike sales and displaced oil demand, 2015-2023		0	0				0	0		Charged	Figure 3.11 (p.113)
	Energy demand in buildings by fuel and scenario, 2023- 2050		0	0	0			0			Charged	Figure 3.12 (p.114)

				-Legend	- te	ms with ext	racted para	imeters				
ter			Time	Horizon				Co	ountry/Regi	on	Data Type	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Energy demand in buildings by end-use and scenario, and equipment ownership rates, 2023-2050		0	0	0	0	0		0		Charged	Figure 3.13 (p.115)
	Residential cooling demand in emerging market and developing economies by driver and scenario, 2023-2050		0	0			0		0		Charged	Figure 3.14 (p.117)
	Energy demand in industry by fuel and scenario, 2023-2050		0	0	0		0	0			Charged	Figure 3.15 (p.118)
	Energy demand by temperature level and fossil fuel use in industry by type and scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 3.16 (p.119)
	Chemicals oil demand and plastic recycling by region and scenario, 2023-2050		0				0		0		Charged	Figure 3.17 (p.120)
	Electricity demand by country/region and scenario, 2023, 2030 and 2050		0	0	0		0		0		Charged	Figure 3.18 (p.122)
Ch.3	Electricity demand growth by application and scenario, 2023-2035		0	0					0		Charged	Figure 3.19 (p.123)
	Daily average electricity demand by end-use in European Union and India in the STEPS, 2023 and 2050		0		0		0		0		Charged	Figure 3.20 (p.125)
	Global electricity generation by source and scenario, 1990- 2050		0	0			0	0			Charged	Figure 3.21 (p.126)
	Share of global coal electricity generation with phase-out commitments in 2023, and renewables targets in selected countries/regions		0	0	0				Ο	Ο	Charged	Figure 3.22 (p.127)
	Change in electricity generation by source and country/region in the STEPS and APS, 2023-2035		0	0					0		Charged	Figure 3.23 (p.128)
	Share of renewables in electricity generation by country/region and scenario, 2015-2035		0	0					0		Charged	Figure 3.24 (p.129)

							-	Legend-	tems	with ex	tracted para	ameters
er			Time H	orizor	1			С	country/Regio	n	Data Type	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Change in coal-fired power generation by country/region in the Stated Policies and Announced Pledges scenarios, 2023-2035		0	0	0				0		Charged	Figure 3.25 (p.130)
	Global power sector CO2 emissions and CO2 intensity of electricity generation by region and scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 3.26 (p.132)
	Power sector investment by technology and scenario, and share in emerging market and developing economies, 2019-2035		0	0	0				0		Charged	Figure 3.27 (p.133)
	Global average electricity grid replacements and extensions by type, region and scenario, 2019-2030		0	0	0				0		Charged	Figure 3.28 (p.135)
	Average annual investment in fuel supply by type and scenario, 2013-2050		0	0	0	0	0	0			Charged	Figure 3.29 (p.136)
	Global liquids demand and supply by scenario (mb/d)		0	0	0		0	0			Charged	Table 3.1 (p.137)
011.0	Oil demand by region, sector and scenario, 2000-2050		0	0			0		0		Charged	Figure 3.30 (p.138)
	Oil demand by selected sectors and by country/region in the Stated Policies and Announced Pledges scenarios, 2023-2035		Ο	0					0		Charged	Figure 3.31 (p.139)
	Oil demand and global oil feedstock demand by country/region in the Stated Policies Scenario, 2010-2035		0	0	0	0	0		0		Charged	Figure 3.32 (p.140)
	Average annual change in oil production by region in the Stated Policies and Announced Pledges scenarios, 2013-2050		0	0	0	0	0		0		Charged	Figure 3.33 (p.141)
	Demand for selected oil products by scenario, 2020-2050		0	0			0		0		Charged	Figure 3.34 (p.142)
	Global gas demand, production and trade by scenario		0	0	0		0	0			Charged	Table 3.2 (p.144)

							-	Legend-	tems	with ex	tracted para	ameters
ter			Time H	orizor	1			C	ountry/Regio	n	Data Type	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Natural gas demand by sector and scenario, 2000-2050		0	0	0		0	0			Charged	Figure 3.35 (p.145)
	Change in average annual natural gas demand by selected region and scenario, 2013-2050		0	0	0		0		0	0	Charged	Figure 3.36 (p.146)
	Average annual change in natural gas production by region and scenario, 2013-2050		0	0			0		0		Charged	Figure 3.37 (p.147)
	Change in long-distance natural gas trade by region and scenario, 2023-2035		0	0					0	0	Charged	Figure 3.38 (p.148)
	Global coal demand, production and trade by scenario (Mtce)		0	0			0	0			Charged	Table 3.3 (p.149)
Ch.3	Change in coal production by county/region and scenario, 2023-2050		0	0			0		0		Charged	Figure 3.39 (p.151)
011.0	Investment in coal supply and coal-fired generation, 2010-2050		0	0			0	0			Charged	Figure 3.40 (p.152)
	Modern bioenergy demand by type and scenario, 2023-2050		0	0			0	0			Charged	Figure 3.41 (p.153)
	Clean energy technology contribution to energy combustion CO2 emissions reduction in the APS, 2023-2050		0	0	0		0	Ο			Charged	Figure 3.42 (p.155)
	Solar PV capacity by scenario, 2010-2035		0	0	0			0			Charged	Figure 3.43 (p.156)
	Wind power capacity by scenario, 2010-2035		0	0	0			0			Charged	Figure 3.44 (p.157)
	Annual average nuclear power capacity additions by scenario, 2010-2035		0	0	0			0			Charged	Figure 3.45 (p.158)

IEA WEO2024 Parameter List Chapter 3 (5/5), Chapter 4 (1/2)

								-Legend	- te	ms with ext	racted para	imeters
ter			Time	Horizon				Co	ountry/Regi	on	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Number
	Global market share of zero-emissions vehicles by type and scenario, and share in stock, 2023-2035	0						0			Charged	Figure 3.46 (p.159)
	Global heat pump sales and stock by scenario, 2020-2035		0	0				0			Charged	Figure 3.47 (p.161)
	Global hydrogen production by technology and scenario, 2023-2050		0	0			0	0			Charged	Figure 3.48 (p.162)
	Global annual CO2 emissions captured by sector and scenario, 2023-2050		0	0			0	0			Charged	Figure 3.49 (p.164)
	Overview of sensitivity cases								0		Charged	Table 4.1 (p.170)
Ch.3	Demand changes by fuel for selected sensitivity cases							0			Charged	Figure 4.1 (p.171)
	Energy-related CO2 emissions in the STEPS and collectively for the sensitivity cases, 2015-2035		0	0	0			0			Charged	Figure 4.2 (p.172)
	Global oil demand in the STEPS and key sensitivities, 2015-2035		0	0	0			0			Charged	Figure 4.3 (p.173)
	Variations in oil demand related to rate of EV uptake in selected regions relative to the STEPS, 2023-2035		0	0					0		Charged	Figure 4.4 (p.175)
	Global electric car sales and their market share by sensitivity case and in the STEPS, 2030 and 2035		0	0	0			0			Charged	Figure 4.5 (p.176)
	Global natural gas demand in the STEPS and key sensitivities, 2015-2035		0	0	0				0		Charged	Figure 4.6 (p.179)
	LNG trade by scenario relative to existing and under construction export capacity to 2050		0	0	0	0	0	0			Charged	Figure 4.7 (p.180)

IEA WEO2024 Parameter List Chapter 4 (2/2), Chapter 5 (1/4)

								-Legend	- te	ms with ext	racted para	meters
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Number
	Additional natural gas demand potential from sensitivity cases based on the STEPS, 2030	0			0				0		Charged	Figure 4.8 (p.182)
	Wind power capacity expansion in the STEPS and delayed wind deployment case, 2023-2035		0	0	0				Ο		Charged	Figure 4.9 (p.183)
	Global electricity demand in the STEPS and key sensitivities, 2015-203		0	0	0				Ο		Charged	Figure 4.10 (p.185)
	Electricity demand growth by end-use in the STEPS, 2023-2030, and data centre sensitivity cases		0	0	0				Ο		Charged	Figure 4.11 (p.187)
Ch.4	Spatial concentration of selected types of facilities, United States								Ο		Charged	Figure 4.12 (p.189)
	Cooling demand in the buildings sector due to variations in heat waves relative to growth in the STEPS, 2023-2035		0	0					0		Charged	Figure 4.13 (p.190)
	Sensitivity cases on appliance efficiencies in EMDE electricity demand relative to the growth in the STEPS, 2023-2035		0	0					0		Charged	Figure 4.14 (p.192)
	Increase in global electricity supply to meet the high cases by energy source, 2024-2035		0	0	0			0			Charged	Figure 4.15 (p. 193)
	OPEC market share and LNG utilisation by scenario		0	0				0			Charged	Figure5.1 (p. 199)
Ch.5	Annual investment in fossil fuels and clean energy by scenario, 2021-2035		0	0	0			0			Charged	Figure 5.2 (p. 201)
011.0	Involvement of top-seven EV and battery makers in the critical minerals supply chain		0	0			0		0	0	Charged	Figure 5.3 (p.202)
	Asian crude oil imports through chokepoints and oil trade volume via major chokepoints in the STEPS		0	0			0		0	0	Charged	Figure 5.4 (p.203)

Source : IEA, World Energy Outlook 2024 (October 2024)

								-Legend	l- te	ems with ex	tracted para	ameters
ter			Time	Horiz	zon			C	Country/Reថ្	gion	Data Type	Darra
Chapter	Specific Data	Single year	Several year	Pas t	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Temperature and precipitation change relative to pre-industrial level in the Middle East in the STEPS, 2041-2060		0						0		Charged	Figure 5.5 (p.205)
	Global hydrogen transmission pipeline length and underground storage capacity in the NZE Scenario, 2020-2035		0	0	0			0			Charged	Figure 5.6 (p.206)
	Peak electricity demand by sector and driver in the STEPS, 2023-2035		0	0					0		Charged	Figure 5.7 (p.207)
	Dispatchable capacity additions by type in the STEPS and APS, 2023-2035		0	0					0		Charged	Figure 5.8 (p.209)
	Power system flexibility needs in selected regions and global flexibility supply in the STEPS and APS		0	0			0		0		Charged	Figure 5.9 (p.210)
Ch.5	Duration curve of hourly capacity factors of natural gas plants in Europe and coal plants in India in the STEPS, 2023, 2035 and 2050		0	0			0		0		Charged	Figure 5.10 (p.211)
	Demand flexibility potential and activation in the STEPS, 2050	0							0		Charged	Figure 5.11 (p.212)
	Current and announced battery cell and component manufacturing capacity, 2023 and 2030		0	0	0				0		Charged	Figure 5.12 (p.214)
	Estimated capital costs for clean technology manufacturing facilities in selected countries, 2023	0		0					0		Charged	Figure 5.13 (p.215)
	Primary supply requirements for critical minerals and expected supply from existing and announced projects by scenario, 2035	0						0			Charged	Table 5.14 (p.216)
	Lead producing country in new refined capacity growth for selected minerals, 2023-2035		0	0				0			Charged	Figure 5.15 (p.217)
	Annual household expenditure on residential energy and transport fuels by income decile, average for 2019-2023		0	0	0	0	0		0		Charged	Figure 5.16 (p.219)

				-Legend	- te	ms with ext	racted para	imeters				
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Number
	Average annual household energy expenditure by economic grouping and scenario, 2018-2050		0	0			0		0		Charged	Figure 5.17 (p.220)
	Annual household energy bills and key clean technology payback periods by urban and rural areas, 2023		0	0					0		Charged	Figure 5.18 (p.221)
	Clean energy job increases and significance in economy- wide job growth by economic grouping, 2023	0		0					Ο	0	Charged	Figure 5.19 (p.223)
	Energy employment by technology and scenario, 2023 and 2030		0	0	0			0			Charged	Figure 5.20 (p.224)
	Global population without access to electricity and clean cooking and status of access policies, 2023	0		0				0			Charged	Figure 5.21 (p.226)
	Population without access to electricity and clean cooking by region and scenario, 2018-2030		0	0	0				Ο		Charged	Figure 5.22 (p.227)
Ch.5	CO2 emissions reductions from behavioural change by measure and scenario, 2035	0									Charged	Figure 5.23 (p.229)
	Passenger transport by mode in selected cities,1985-2023		0	0					0		Charged	Figure 5.24 (p.230)
	Energy-related CO2 emissions in advanced and emerging market and developing economies by scenario, 2020-2050		0	0			0		0		Charged	Figure 5.25 (p.231)
	Global average temperature rise including natural variability since 2000 and long-term average temperature rise by scenario		0	0	0	0		0			Charged	Figure 5.26 (p.232)
	Annual costs of climate impacts to hydropower capacity and increased cooling demand		0	0				0			Charged	Figure 5.27 (p.234)
	Methane emissions from fossil fuel operations and related intensities by scenario, 2023-2050		0	0			0	0			Charged	Figure 5.28 (p.235)

Source : IEA, World Energy Outlook 2024 (October 2024)

IEA WEO2024 Parameter List Chapter 5 (4/4), Chapter 6 (1/2)

								-Legend-	tem	s with e	xtracted pa	rameters
er			Time	Horizor	1			Cou	ntry/Regio	n	Data Type	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Methane emissions from fossil fuel consumption in selected countries/regions, 2023	0		0					0	0	Charged	Figure 5.29 (p.236)
	Change in PM2.5 emissions by sector and premature deaths from ambient and household air pollution by scenario, 2023-2050		0	0			0	0			Charged	Figure 5.30 (p.237)
Ch.5	Annual energy sector investment by sector and scenario, 2024 and 2035		0	0				0			Charged	Figure 5.31 (p.239)
01.5	Annual energy sector investment in selected emerging market and developing economies by scenario, 2023 and 2035	0	0						0		Charged	Figure 5.32 (p.240)
	Power sector investment by type and scenario, 2023-2050		0	0			0	0			Charged	Figure 5.33 (p.241)
	Characteristics of energy sector financing in the APS and NZE Scenario, 2023 and 2035	0	0	0					0		Charged	Figure 5.34 (p.242)
	Key economic and energy indicators by country/region, 2023	0		0					0	0	Charged	Table 6.1 (p.247)
	Electricity demand growth and changes in electricity generation in the United States in the STEPS, 2023-2035	0	0	0	0				0		Charged	Figure 6.1 (p.251)
	Liquid biofuels and low-emissions hydrogen production in Latin America and the Caribbean in the STEPS and APS, 2023-2050		0	0			0	0	0		Charged	Figure 6.2 (p.254)
Ch.6	Modern biomass by source in Latin America and the Caribbean in the STEPS and APS, 2023-2050		0	0			0		0		Charged	Figure 6.3 (p.255)
	Total electricity system costs by component, region and scenario, 2019-2035		0	0	0		0		0		Charged	Figure 6.4 (p.258)
-	Production of selected minerals in Africa in the STEPS, 2023 and 2030		0	0	0				0		Charged	Figure 6.5 (p.262)
	Financing clean cooking projects, 2019-2022		0	0					0		Charged	Figure 6.6 (p.263)

IEA WEO2024 Parameter List Chapter 2 (2/2), Annex (1/6)

				-Lege	nd-	tems with	n extracted p	arameters				
er			Time	Horizo	on			C	ountry/Regi	ion	Data Type	
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Energy investment, electricity generation and methane emissions in the Middle East in the STEPS and APS, 2023 and 2035		0	0					0		Charged	Figure 6.7 (p.267)
	Natural gas demand savings from energy efficiency improvements in the Caspian and share of total exports in the APS, 2030 and 2035		0	0	0				0		Charged	Figure 6.8 (p.271)
	GDP and electricity demand growth in China, 2015-2023, and electricity demand growth by sector, 2019-2023		0	0					0		Charged	Figure 6.9 (p.274)
	Per capita electricity consumption by sector and region in the STEPS, 2030	0			0				Ο		Charged	Figure 6.10 (p.275)
Ch.6	EV sales, oil demand and emissions from passenger road transport in India in the STEPS and APS, 2023-2035		0	0					0		Charged	Figure 6.11 (p.279)
	Electricity generation by fuel in Japan and Korea in the STEPS and APS, 2023-2050		0	0			0		0	0	Charged	Figure 6.12 (p.282)
	Installed solar PV capacity per non-forested land area in selected countries, 2023	0		0					0	0	Charged	Figure 6.13 (p.283)
	Installed coal-fired generation capacity and average capacity factor in Southeast Asia in the STEPS and APS, 2023-2050		0	0			0		0		Charged	Table 6.14 (p.287)
	Average annual change in coal-fired power plant emissions by technology type in Southeast Asia in the STEPS and APS, 2023- 35		0	0					0		Charged	Figure 6.15 (p.287)
	World energy supply	0							0		Free	Table A.1a (p.296)
Annex	World final energy consumption		0	0	0	0	0	0			Free	Table A.2a. (p.297-298)
	World electricity sector		0	0	0	0	0	0			Free	Table A.3a (p.299)

Source : IEA, World Energy Outlook 2024 (October 2024)

								-Legend	l- te	ms with ext	racted para	imeters
ter			Time	Horizon				Co	ountry/Regi	on	Data Type	Dece
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	World CO2 emissions		0	0	0	0	0	Ο			Free	Table A.4a (p.300)
	World economic and activity indicators		0	0	0	0	0	Ο			Free	Table A.5a (p.301)
	World energy supply		0	0	0	0	0	Ο			Free	Table A.1b (p.302)
	World final energy consumption		0	0	0	0	0	0			Free	Table A.2b (p.303-304)
	World electricity sector		0	0	0	0	0	0			Free	Table A.3b (p.305)
Annex	World CO2 emissions		0	0	0	0	0	0			Free	Table A.4b (p.306)
An	World economic and activity indicators		0	0	0	0	0	0			Free	Table A.5b (p.307)
	World energy supply		0	0	0	0	0	Ο			Free	Table A.1c. (p.308)
	World final energy consumption		0	0	0	0	0	0			Free	Table A.2c (p.309-310)
	World electricity sector		0	0	0	0	0	Ο			Free	Table A.3c (p.311)
	World CO2 emissions		0	0	0	0	0	0			Free	Table A.4c (p.312)
	World economic and activity indicators		0	0	0	0	0	0			Free	Table A.5c (p.313)

								-Legend	- te	ms with ext	racted para	meters
ter			Time	Horizon				Co	ountry/Regi	on	Data Type	Dono
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Total energy supply (EJ)		0	0	0	0	0	0	0	0	Free	Table A.6 (p.314)
	Renewables energy supply (EJ)		0	0		0	0	0	0	0	Free	Table A.7 (p.314)
	Oil production (mb/d)		0	0		0	0	0	0		Free	Table A.8 (p.315)
	Oil demand (mb/d)		0	0		0	0	0	0	0	Free	Table A.9 (p.315)
	World liquids demand (mb/d)		0	0	0		0	0			Free	Table A.10 (p.316)
Annex	Refining capacity and runs (mb/d)		0	0	0		0		0	0	Free	Table A.11 (p.316)
Anr	Natural gas production (bcm)		0	0	0		0	0	0		Free	Table A.12 (p.317)
	Natural gas demand (bcm)		0	0	0		0	0	0	0	Free	Table A.13 (p.317)
	Coal production (Mtce)		0	0	0		0	0	Ο	0	Free	Table A.14 (p.318)
	Coal demand (Mtce)		0	0	0		0	0	0	0	Free	Table A.15 (p.318)
	Electricity generation (TWh)		0	0	0		0	0	0	0	Free	Table A.16 (p.319)
	Renewables generation (TWh)		0	0	0		0	0	0	0	Free	Table A.17 (p. 319)

							[-Legend	- te	ms with ext	racted para	meters
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Dogo
Chapter	Specific Data	Single year	Several year	Past	'30 '4	40 '5	50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Solar PV generation (TWh)		0	0	0	C	С	0	0	0	Free	Table A.18 (p.320)
	Wind generation (TWh)		0	0	0	C	С	0	0	0	Free	Table A.19 (p.320)
	Nuclear generation (TWh)		0	0	0	C	С	0	0	0	Free	Table A.20 (p.321)
	Natural gas generation (TWh)		0	0	0	C	С	0	0	0	Free	Table A.21 (p.321)
	Coal generation (TWh)		0	0	0	C	С	0	0	0	Free	Table A.22 (p.322)
Annex	Total final consumption (EJ)		0	0	0	C	С	0	Ο	0	Free	Table A.23 (p.322)
Ani	Industry consumption (EJ)		0	0	0	C	С	0	Ο	0	Free	Table A.24 (p.323)
	Transport consumption (EJ)		0	0	0	C	С	0	Ο	0	Free	Table A.25 (p. 323)
	Buildings consumption (EJ)		0	0	0	C	С	0	Ο	0	Free	Table A.26 (p.324)
	Hydrogen demand (PJ)		0	0	0	C	С	0	0	0	Free	Table A.27 (p.324)
	Low-emissions hydrogen balance (Mt H2 equivalent)		0	0	0	C	С				Free	Table A.28 (p.325)
	Total CO_2 emissions* (Mt CO_2)		0	0	0	C	С	0	0	0	Free	Table A.29 (p. 325)

								-Legend	- te	ms with ext	racted para	meters
ter			Time	Horizon				Co	ountry/Regi	on	Data Type	Demo
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Electricity and heat sectors CO_2 emissions (Mt CO_2)		0	0	0		0		0	0	Free	Table A.30 (p.326)
	Total final consumption CO ₂ emissions* (Mt CO ₂)		0	0	0		0		0	0	Free	Table A.31 (p. 326)
	Population assumptions by region		0	0	0		0		0	0	Free	Table B.1 (p. 328)
	CO2 prices for electricity, industry and energy production in selected regions by scenario		0	0	0	0	0		0	0	Free	Table B.2 (p. 329)
	Remaining technically recoverable fossil fuel resources, 2023	0		0					0		Free	Table B.3 (p. 331)
Annex	Technology costs in selected regions in the Stated Policies Scenario		0	0	0		0		0		Free	Table B.4a (p. 333)
An	Technology costs in selected regions in the Announced Pledges Scenario		0	0	0		0		0		Free	Table B.4b (p. 334)
	Technology costs in selected regions in the Net Zero Emissions by 2050 Scenario		0	0	0		0		0		Free	Table B.4c (p. 335)
	Costs for selected technologies by scenario		0	0	0		0				Free	Table B.5 (p. 337)
	Cross-cutting policy assumptions for selected regions/countries by scenario		0		0		0		0	Ο	Free	Table B.6 (p. 340- 343)
	Electricity sector policies and measures as modelled by scenario for selected regions/countries		0		0	0	0		0		Free	Table B.7 (p. 344- 345)

								-Legend	- te	ms with ex	tracted para	meters
ter			Time	Horizon				Co	ountry/Regio	on	Data Type	Paga
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Industry sector policies and measures as modelled by scenario for selected regions/countries				0				0		Free	Table B.8 (p. 346- 347)
Annex	Buildings sector policies and measures as modelled by scenario for selected regions/countries				0				0	0	Free	Table B.9 (p. 348- 349)
Ā	Transport sector policies and measures as modelled by scenario for selected regions/countries				0	0	0		0	0	Free	Table B.10 (p. 350- 352)
	Industry and intergovernmental-led initiatives and manufacturing targets by scenario				0	0	0	0	0		Free	Table B.11 (p. 353)

Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
CO2 prices	 CO2 prices for electricity, industry and energy production in selected regions by scenario 	NZEAPSSTEPS	<u>Past</u> ∙ -	Future 2030 2035 2040 2050	 <u>Global</u> Advanced economies with net zero emissions pledges Emerging market and developing economies with net zero emissions pledges Other emerging market and developing economies 	Region • Canada • Chile • Colombia • China • EU • Korea	All sector

UnitUSD/tCO2

Country / Region	Net Zero	Emissions (NZ		enario		Announceo Scenario			Stated Policies Scenario (STEPS)					
	2030	2035	2040	2050	2030	2035	2040	2050	2030	2035	2040	2050		
Canada	-	-	-	-	-	-	-	-	126	126	126	126		
Chile, Columbia	-	-	-	-	-	-	-	-	21	24	28	28		
China	-	-	-	-	-	-	-	-	39	43	46	52		
EU	-	-	-	-	-	-	-	-	140	145	149	158		
Korea	-	-	-	-	-	-	-	-	56	65	73	89		
Advanced economies with net zero emissions pledges	140	180	205	250	135	160	175	200	-	-	-	-		
Emerging market and developing economies with net zero emissions pledges	90	125	160	200	40	65	110	160	-	-	-	-		
Selected emerging market and developing economies without net zero emissions pledges	25	50	85	180	-	-	-	_	-	-	-	-		
Other emerging market and developing economies	15	25	35	55	-	6	17	47	-	-	-	-		

Source : IEA, World Energy Outlook 2024 (October 2024) - Table B.2 "CO2 prices for electricity, industry and energy production in selected regions by scenario" (P.329)

Price of key commodities/products (crude oil, natural gas, coal prices)

Category	Datasets	Scenario	Time H	lorizon	Cou	untry / Region	Sector
Price of key commodities/products	 Fossil fuel prices by scenario 	NZEAPSSTEPS	<u>Past</u> • 2023	Future • 2030 • 2040 • 2050	<u>Global</u> • World	Region • United States • EU • China • Japan	All sector

UnitCrude oil: USD/barrel, Natural gas: USD/Mbtu, Steam coal: USD/tonne

Category	Country/	Past	Net Zero Em	issions by 20 (NZE)	50 Scenario	Announced	Pledges Scer	nario (APS)	Stated Pol	icies Scenario	o (STEPS)
	region	2023	2030	2040	2050	2030	2040	2050	2030	2040	2050
Crude oil	World	82	42	30	25	72	63	58	79	77	75
	United States	2.7	2.1	2.0	2.0	3.2	3.0	2.9	3.9	4.1	4.2
Natural	EU	12.1	4.4	4.1	4.0	6.0	5.2	5.2	6.5	7.6	7.7
gas Ja	Japan	13.0	5.0	4.8	4.8	6.8	6.1	6.2	8.3	8.8	8.7
	China	11.5	5.0	4.8	4.8	6.9	6.2	6.2	7.2	8.2	8.3
	United States	57	28	23	23	42	31	27	51	42	40
Steam and	EU	129	57	43	39	64	51	48	68	69	64
Steam coal	Japan	174	66	53	49	81	66	61	105	86	82
	Coastal China	150	64	54	49	78	67	61	101	88	82

Source : IEA, World Energy Outlook 2024 (October 2024) - Table 2.3 "Wholesale fossil fuel prices by scenario" (P.90)

Energy supply and demand (Low-emissions hydrogen and low-emissions hydrogen based fuel demand and supply)

Category	Datasets	Scenario	Time Horizon		Country	/ Region	Sector
Energy demand and supply	 Low-emissions hydrogen and low-emissions hydrogen based fuel demand and supply 	NZEAPSSTEPS	<u>Past</u> • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	Region • -	• All

UnitMt H2 equivalent

Category	Past		Emissions b cenario (NZE		Announced	Pledges Scer	nario (APS)	Stated Poli	icies Scenario	o (STEPS)
	2023	2030	2035	2050	2030	2035	2050	2030	2035	2050
Low-emissions hydrogen production	1	66	152	401	25	78	260	7	15	46
Water electrolysis	0	49	118	326	18	61	203	5	11	37
Fossil fuels with CCUS	1	17	33	74	7	17	57	2	4	9
Bioenergy and other	0	0	0	1	0	0	0	0	0	0
Transformation of hydrogen	0	41	91	201	16	48	140	4	9	26
To power generation	-	17	30	44	4	11	20	1	2	3
To hydrogen-based fuels	0	16	50	148	7	30	109	1	4	17
in oil refining	0	6	8	5	3	5	7	2	2	5
To biofuels	0	2	3	4	2	2	3	0	0	1
Hydrogen demand for end-use sectors	0	24	59	191	9	29	117	2	6	20
Low-emissions hydrogen- based fuels	-	15	48	145	7	29	108	1	3	17
Total final consumption	_	10	33	127	6	27	91	0	2	15
Power generation	-	5	14	18	0	2	17	0	1	2
Trade	0	18	32	71	7	22	59	2	7	22
Trade as share of demand	0%	28%	21%	18%	27%	28%	23%	30%	48%	50%

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.28 "Low-emissions hydrogen balance" (P.325)

Category	Datasets	Scenario	Time H	Horizon	Country	/ Region	Sector
 Energy demand and supply 	 Global liquids demand and supply 	NZEAPSSTEPS	<u>Past</u> • 2023	Future • 2030 • 2035 • 2050	Global • World	Region • -	 All Transport Buildings etc.

Category	Past		Emissions b enario (NZE)	-	Announced	Pledges Scer	ario (APS)	Stated Polic	cies Scenario	(STEPS)
	2023	2030	2035	2050	2030	2035	2050	2030	2035	2050
Road transport	42.7	31.9	20.1	2.3	40.5	34.1	16.8	43.3	40.2	34.8
Aviation and shipping	11.6	9.3	7.0	1.8	11.0	10.1	7.5	13.0	13.5	14.5
Industry and petrochemicals	20.0	19.7	18.2	11.1	21.4	20.9	17.5	23.3	24.6	25.3
Buildings and power	11.4	6.6	3.6	0.4	8.1	6.1	3.6	9.0	7.7	6.1
Other sectors	13.4	10.8	8.9	5.3	11.8	10.9	8.4	13.1	13.1	12.5
World oil demand	99.1	78.3	57.8	23.0	92.8	82.0	53.7	101.7	99.1	93.1
Liquid biofuels	2.3	6.0	6.8	5.9	4.9	6.3	7.0	2.9	3.2	4.1
Low-emissions hydrogen-based fuels	0.0	0.7	2.0	5.6	0.3	1.4	4.6	0.0	0.1	0.6
World liquids demand	101.4	85.0	66.6	34.5	98.0	89.7	65.4	104.7	102.4	97.9
Conventional crude oil	62.7	48.6	35.7	15.3	54.9	46.6	28.9	59.4	57.0	54.3
Tight oil	9.1	8.4	6.4	1.6	10.8	10.4	7.2	11.2	11.8	10.7
Natural gas liquids	20.2	15.4	11.0	4.1	19.8	18.4	13.1	23.1	22.1	19.2
Extra-heavy oil and bitumen	3.9	3.2	2.5	1.3	3.9	3.6	2.7	4.6	4.6	5.1
Other production	1.0	0.4	0.3	0.1	0.9	0.9	0.3	1.0	1.0	1.0
World oil production	96.9	76.0	55.9	22.4	90.4	79.9	52.1	99.2	96.5	90.3
OPEC share	34%	35%	39%	51%	34%	36%	41%	33%	34%	40%
World processing gains	2.4	2.3	1.9	0.7	2.4	2.2	1.6	2.5	2.6	2.8
World oil supply	99.2	78.3	57.8	23.0	92.8	82.0	53.7	101.7	99.1	93.1
IEA crude oil price	82	42	33	25	72	67	58	79	78	75

Source : IEA, World Energy Outlook 2024 (October 2024) - Table 3.5 "Global liquids demand and supply by scenario (mb/d)" (P.137)

Category	Datasets	Scenario	Time Horizon		Country	Sector	
Energy demand and supply	 Global liquids demand and supply 	APSSTEPS	Past • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global ▪ World	Region • -	All sector

Unit Mb/d

Category	Pas	t	Announced	Pledges Scena	rio (APS)	Stated Poli	cies Scenario (STEPS)
Category	2022	2023	2030	2035	2050	2030	2035	2050
Fotal liquids	99.3	101.4	97.9	89.3	64.7	104.6	102.4	97.8
Biofuels	2.2	2.3	4.9	6.3	7.0	2.9	3.2	4.1
Low-emissions hydrogen-based fuels	-	-	0.2	1.0	4.0	-	0.1	0.0
Total oil	97.1	99.1	92.8	82.0	53.7	101.7	99.1	93.
CT*, GTL** and additives	0.9	1.0	0.9	0.7	0.3	0.9	1.0	0.9
Direct use of crude oil	1.0	0.9	0.3	0.2	0.1	0.4	0.3	0.1
Oil products	95.2	97.2	91.6	81.1	53.3	100.4	97.8	92.
LPG and ethane	14.0	14.0	13.9	13.5	11.3	16.4	17.3	17.8
Naphtha	6.8	7.0	6.0	6.2	6.0	7.7	8.3	9.2
Gasoline	24.4	25.0	22.2	17.7	7.6	23.9	21.3	17.1
Kerosene	6.2	7.1	7.9	7.9	6.8	8.5	9.1	10.6
Diesel	27.3	27.3	25.4	22.2	12.5	28.5	27.8	25.
Fuel oil	6.5	6.5	4.1	3.0	1.1	5.7	5.4	4.5
Other products	10.0	10.3	12.1	10.6	8.0	9.7	8.6	7.4
Fractionated products from NGLs***	12.2	12.8	12.5	11.5	8.2	14.3	13.3	11.
Refinery products	83.0	84.4	79.1	69.6	45.1	86.1	84.5	81.0
Refinery market share	84%	83%	81%	78%	70%	82%	83%	83%

*CT : coal-to-liquids;、**GTL : gas-toliquids、***NGL : natural gas liquids

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.10: World liquids demand (mb/d) (P.316)

Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
Energy demand and supply	Global gas demand	NZEAPSSTEPS	<u>Past</u> • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	Region • -	 All Power Industry etc.

Unit bcme

Category	Past	Net Zero Emi	ssions by 20 (NZE)	50 Scenario	Announced	Pledges Scer	nario (APS)	Stated Policies Scenario (STEPS)		
U <i>Y</i>	2023	2030	2035	2050	2030	2035	2050	2030	2035	2050
Natural gas demand (bcm)	4,186	3,617	2,257	882	4,003	3,493	2,466	4,430	4,422	4,377
Power	1,642	1,537	773	136	1,519	1,258	786	1,657	1,602	1,513
Industry	936	852	711	338	941	888	674	1,037	1,080	1,136
Buildings	809	570	307	1	780	649	418	877	868	855
Transport	151	113	67	7	143	116	56	183	191	191
Low-emissions H2 production inputs	-	64	120	246	25	66	219	5	13	31
Other	647	482	279	156	593	510	302	671	668	651
of which abated with CCUS	14	144	247	463	69	134	356	29	43	74
Natural gas production (bcm)	4,218	3,617	2,257	882	4,003	3,493	2,466	4,430	4,422	4,377
Conventional gas	2,908	2,526	1800	635	2,818	2,560	1,969	2,982	2,996	3,076
Unconventional gas	1,310	1,091	457	247	1,185	932	497	1,449	1,425	1,301
Natural gas trade (bcm)	1,039	826	517	195	1,044	863	466	1,189	1,214	1,234
LNG	546	539	339	145	653	597	290	690	719	830
Pipeline	493	287	179	50	391	266	176	499	495	403

Source : IEA, World Energy Outlook 2024 (October 2024) - Table 3.2 "Global gas demand, production and trade by scenario" (P.144)

Parameters in IEA WEO2024 Energy demand and supply (Global gas demand) (2/2)

Category	Datasets	Scenario	Time H	lorizon	Country	/ Region	Sector
 Energy demand and supply 	Global gas demand	NZEAPSSTEPS	<u>Past</u> • 2023	<u>Future</u> • 2030 • 2035 • 2050	<u>Global</u> • World	Region • -	 All Power Industry etc.

Unit bcme

Category and	Past	Net Zero Emissions by 2050 Scenario (NZE)			Announced Pledges Scenario (APS)			Stated Poli	cies Scenaric	(STEPS)
Country / Region	2023	2030	2035	2050	2030	2035	2050	2030	2035	2050
Natural gas price										
United States	2.7	2.1	2.1	2	3.2	3.1	2.9	3.9	4.0	4.2
EU	12.1	4.4	4.2	4	6	5.5	5.2	6.5	6.5	7.7
Japan	13	5	4.9	4.8	6.8	6.2	6.2	7.2	7.1	8.3
China	11.5	5	4.9	4.8	6.9	6.4	6.2	8.3	7.8	8.7
Low-emission gas	36	349	643	1,397	175	375	1,023	78	125	362
Low-emission hydrogen	0	172	397	1,052	65	210	688	18	37	128
Biogas	26	51	74	125	43	59	107	36	48	80
Bio methane	10	126	172	221	67	106	228	24	40	154

Source : IEA, World Energy Outlook 2024 (October 2024) - Table 3.2 "Global gas demand, production and trade by scenario" (P.144)

Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
Energy demand and supply	Global coal demand	NZEAPSSTEPS	<u>Past</u> • 2023	Future • 2030 • 2035 • 2050	Global • World	<u>Region</u> ∙ -	 All Power Industry

Unit Mtce、EJ

Category	Past		Emissions b enario (NZE)	-	Announced I	Pledges Scen	ario (APS)	Stated Policies Scenario (STEPS)			
	2023	2030	2035	2050	2030	2035	2050	2030	2035	2050	
World coal demand	5,986	3,440	1,743	501	4,702	3,231	1,370	5,307	4,453	3,191	
Power	3,916	2,015	738	228	2,944	1,800	686	3,349	2,609	1,612	
Industry	1,606	1,199	864	219	1,396	1,175	608	1,581	1,539	1,367	
Other sectors	464	226	140	54	362	257	76	377	305	213	
of which abated with CCUS	0%	2%	13%	77%	0%	4%	25%	0%	0%	1%	
Advanced economies	878	249	122	53	336	196	75	502	357	219	
Emerging market and developing economies	5,108	3,191	1,620	447	4,365	3,035	1,295	4,806	4,096	2,973	
World coal production	6,278	3,441	1,743	501	4,702	3,231	1,370	5,308	4,454	3,191	
Steam coal	5,079	2,619	1,192	409	3,743	2,423	985	4,262	3,479	2,398	
Coking coal	970	759	533	89	851	724	346	911	861	711	
Peat and lignite	229	62	18	3	107	84	39	135	114	82	
Advanced economies	1,041	310	198	36	451	332	127	628	519	412	
Emerging market and developing economies	5,237	3,131	1,544	465	4,251	2,899	1,243	4,680	3,934	2,779	
World coal trade	1,144	612	368	97	797	629	307	965	877	712	

Source : IEA, World Energy Outlook 2024 (October 2024) - Table 3.3 "Global coal demand, production and trade, and solid bioenergy use by scenario (Mtce)" (P.149)

Category	Datasets	Scenario	Time I	Horizon		Country / Region		
Energy demand and supply	 Global coal demand by region 	APSSTEPS	Past • 2010 • 2022 • 2023	Future • 2030 • 2035 • 2050	Global • World	Region• North America• Central and South America• Europe• Africa• Middle East• Eurasia• Asia Pacific	• All	

Unit Mtce

			Past		Announced F	Pledges Scen	ario (APS)	Stated Policies Scenario (STEPS)			
Region	Country	2010	2022	2023	2030	2035	2050	2030	2035	2050	
World	-	5,216	5,879	5,986	4,702	3,231	1,370	5,307	4,453	3,191	
North America	_	769	366	308	69	32	16	137	68	26	
	United States	717	342	284	59	25	11	125	58	16	
Central and		38	41	38	26	24	15	37	38	42	
South America	Brazil	21	20	20	16	15	10	22	23	25	
Europe	_	539	352	299	142	85	40	195	155	125	
	European Union	361	238	188	62	28	9	94	61	36	
Africa		155	150	147	106	80	30	124	108	89	
Middle East	_	3	5	5	6	6	4	6	7	8	
Eurasia	_	203	250	257	213	186	134	232	214	179	
	Russia	151	191	197	167	149	106	173	159	123	
Asia Pacific	_	3,509	4,715	4,931	4,139	2,818	1,129	4,576	3,863	2,724	
	China	2,565	3,329	3,469	2,748	1,731	572	3,029	2,358	1,413	
	India	392	665	721	761	590	336	832	800	645	
	Japan	165	156	151	99	75	24	107	93	60	
	Southeast Asia	122	297	320	353	280	103	388	418	438	

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.15 "Coal demand (Mtce)" (P.318)

Category	Datasets	Scenario	Time Horizon Country / Region		ry / Region	Sector	
 Energy supply and demand 	 Oil production by scenario and region 	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	 <u>Region</u> North America Central and South America Europe Africa Middle East Eurasia Asia Pacific 	All sector

Category	Past			Announced	Pledges Scena	rio (APS)	Stated Policies Scenario (STEPS)		
	2010	2022	2023	2030	2035	2050	2030	2035	2050
World supply	85.1	97.4	99.2	92.8	82.0	53.7	101.7	99.1	93.1
Process gains	2.1	2.3	2.4	2.4	2.2	1.6	2.5	2.6	2.8
World production	83.2	95.1	96.9	90.4	79.9	52.1	99.2	96.5	90.3
Conventional	66.8	62.9	62.7	54.9	46.6	28.9	59.4	57.0	54.3
Tight oil	0.7	8.2	9.1	10.8	10.4	7.2	11.2	11.8	10.7
Natural gas liquids	12.7	19.3	20.2	19.8	18.4	13.1	23.1	22.1	19.2
Extra-heavy oil & bitumen	2.6	3.8	3.9	3.9	3.6	2.7	4.6	4.6	5.1
Non-OPEC	51.7	61.8	63.9	60.0	51.5	30.8	66.8	63.9	54.2
OPEC	31.5	33.3	33.0	30.4	28.3	21.3	32.4	32.6	36.1

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.8 "Oil production (mb/d)" (P.315)

Category	y Datasets		cenario Time Horizon		Count	Sector	
 Energy supply and demand 	 Oil production by scenario and region 	APSSTEPS	Past • 2010 • 2022 • 2023	Future • 2030 • 2035 • 2050	Global • World	 <u>Region</u> North America Central and South America Europe Africa Middle East Eurasia Asia Pacific 	All sector

Country / Region	Past			Announced	Pledges Scena	ario (APS)	Stated Policies Scenario (STEPS)		
, ,	2010	2022	2023	2030	2035	2050	2030	2035	2050
North America	14.0	25.7	27.4	26.3	23.5	14.8	29.5	28.5	23.8
Central and South America	7.4	6.4	7.0	8.1	7.3	5.0	8.8	9.4	9.1
Europe	4.4	3.3	3.4	2.6	1.8	0.5	2.9	2.2	1.2
European Union	0.7	0.5	0.5	0.3	0.2	0.1	0.3	0.3	0.3
Africa	10.3	7.2	7.4	5.7	4.5	2.7	6.6	5.9	5.3
Middle East	25.4	31.1	30.4	29.4	27.8	21.5	31.2	32.1	35.8
Eurasia	13.4	13.9	13.8	12.4	10.2	5.4	13.8	12.6	11.1
Asia Pacific	8.4	7.5	7.5	5.9	4.7	2.2	6.4	5.8	4.1
Southeast Asia	2.6	1.8	1.8	1.3	1.0	0.5	1.4	1.2	1.0

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.8 "Oil production (mb/d)" (P.315)

Category	Datasets	Scenario	Time Horizon		Country	Sector	
Energy supply and demand	• Oil demand	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	<u>Global</u> • World	 Region North America Central and South America Europe Africa Middle East Eurasia Asia Pacific International bunkers 	All sector

Category	Past			Announced Pledges Scenario (APS)			Stated Policies Scenario (STEPS)		
	2010	2022	2023	2030	2035	2050	2030	2035	2050
World	87.2	97.1	99.1	92.8	82	53.7	101.7	99.1	93.1
North America	22.2	22	22.1	18.8	14.7	6.3	21	18.6	14.5
United States	17.8	18.1	18.2	15.6	12.1	4.8	17.2	15.1	11.3
Central and South America	5.5	5.5	5.6	5.2	4.8	2.9	5.8	6	6.6
Brazil	2.2	2.4	2.5	2.3	2.1	1.2	2.5	2.6	2.8
Europe	13.6	12.4	12.1	9.6	7	2.4	10.7	9	5.3
EU	10.3	9.3	9	6.9	4.9	1.4	7.8	6.3	3
Africa	3.3	4.3	4.2	4.8	5.1	5.8	4.9	5.6	7.9
Middle East	7	8.1	8.1	7.7	7.8	7.4	8.1	8.5	10.2

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.9 "Oil demand (mb/d)" (P.315)

Category	Datasets	Scenario	Time Horizon		Country	Sector	
 Energy supply and demand 	• Oil demand	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	<u>Global</u> • World	 Region North America Central and South America Europe Africa Middle East Eurasia Asia Pacific International bunkers 	All sector

Category	Past			Announced Pledges Scenario (APS)			Stated Policies Scenario (STEPS)		
	2010	2022	2023	2030	2035	2050	2030	2035	2050
Eurasia	3.5	4.3	4.4	4.3	4.2	3.9	4.6	4.7	5
Russia	3	3.5	3.5	3.4	3.3	2.9	3.6	3.6	3.6
Asia Pacific	25.1	33.3	34.8	35.2	32	20.2	38.1	37.9	34.4
China	8.8	14.8	16.2	16.1	14.1	7.8	17.4	16.4	11.8
India	3.3	5	5.2	6.2	6.1	4.5	6.6	7.1	7.6
Japan	4.2	3.1	3.1	2.3	1.7	0.7	2.6	2.3	1.7
Southeast Asia	4	4.9	5	5.5	5.2	3.8	6	6.4	7
International bunkers	7	7.1	7.7	7.1	6.4	4.9	8.6	8.9	9.3

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.9 "Oil demand (mb/d)" (P.315)

Category	Datasets	Scenario	Time H	lorizon		Sector	
• Energy supply and demand	 Natural gas production 	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	 Region North America Central and South America Europe Africa Middle East Eurasia Asia Pacific 	All sector

Unit bcm

Region		Past		Announced	Pledges Scenar	io (APS)	Stated Policies Scenario (STEPS)		
-	2010	2022	2023	2030	2035	2050	2030	2035	2050
World	3,286	4,210	4,218	4,003	3,493	2,466	4,430	4,422	4,377
Conventional gas	2,781	2,941	2,908	2,818	2,560	1,969	2,982	2,996	3,076
Tight gas	274	312	314	213	138	39	242	195	120
Shale gas	154	861	896	890	728	429	1,106	1,128	1,082
Coalbed methane	77	85	86	58	49	29	77	78	73
North America	815	1,272	1,323	1,153	863	409	1,319	1,241	1,073
Central and South America	163	161	160	150	139	102	164	170	176
Europe	341	253	236	172	127	57	198	181	133
European Union	148	47	37	17	9	2	31	29	23
Africa	210	254	262	261	240	211	284	298	314
Middle East	464	687	698	849	860	777	903	962	1,152
Eurasia	807	896	851	793	715	577	891	896	873
Asia Pacific	487	686	688	625	549	332	671	675	655
	215	196	193	156	130	81	172	152	122

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.12 "Natural gas production (bcm)" (P.317)

Parameters in IEA WEO2024 Energy demand and supply (Gas demand by region) (1/2)

Category	Datasets	Scenario	Time H	lorizon		Sector	
 Energy demand and supply 	• Global gas demand	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	Region• North America• Central and South America• Europe• Africa• Middle East• Eurasia• Asia Pacific	All sector

Unit bcme										
Region	Country		Past		Announced I	Pledges Scena	Stated Policies Scenario (STEPS)			
		2010	2022	2023	2030	2035	2050	2030	2035	2050
World	-	3,312	4,166	4,186	4,003	3,493	2,466	4,430	4,422	4,377
North America	-	838	1,167	1,175	957	674	367	1,121	1,028	811
	United States	678	939	940	760	506	260	883	791	578
Central and South	_	150	156	156	158	152	102	168	180	183
America	Brazil	28	32	30	27	26	20	34	35	32
Europe	_	607	544	507	409	281	86	462	407	301
	European Union	446	358	331	264	187	29	296	257	166
Africa	_	107	176	182	181	180	185	203	219	290
Middle East	-	370	566	578	674	692	678	702	750	880

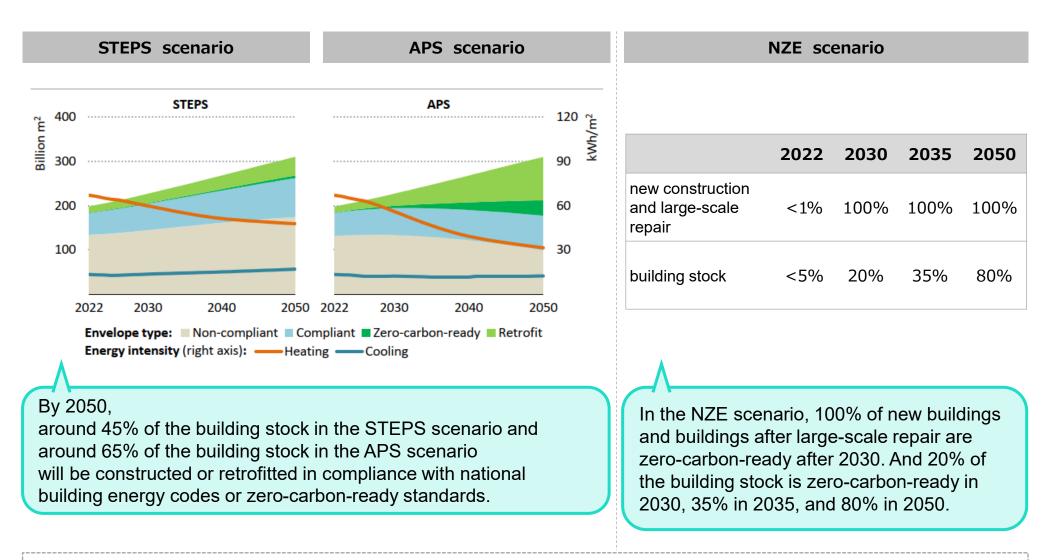
Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.13: "Natural gas demand (bcm)" (P.317)

Parameters in IEA WEO2024 Energy demand and supply (Gas demand by region) (2/2)

Category	Datasets	Scenario	Time H	lorizon		Country / Region	Sector
Energy demand and supply	• Global gas demand	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	Global • World	Region • North America • Central and South America • Europe • Africa • Middle East • Eurasia • Asia Pacific	All sector

Unit bcme		1								
Region	Country	Past			Announced	Pledges Scena	ario (APS)	Stated Policies Scenario (STEPS)		
		2010	2021	2022	2030	2035	2050	2030	2035	2050
Eurasia	-	573	652	660	617	575	490	671	671	669
	Russia	467	515	523	479	444	371	521	513	485
Asia Pacific	-	577	904	928	992	928	559	1,075	1,131	1,191
	China	110	370	398	448	397	213	499	522	523
	India	64	60	64	91	107	107	99	125	172
	Japan	95	94	85	57	45	22	61	49	41
	Southeast Asia	149	167	175	191	189	115	209	231	265
International b	unkers		-		16	11-		27	36	51

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.13: "Natural gas demand (bcm)" (P.317)


Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
• Energy demand and supply	Coal Production	APSSTEPS	Past • 2010 • 2022 • 2023	<u>Future</u> • 2030 • 2035 • 2050	<u>Global</u> • World	Region North America Central and South America Europe Africa Middle East Eurasia Asia Pacific	All sector

Unit Mtce

Country/Region	Past			Announced Pledges Scenario (APS)		Stated Policies Scenario (STEPS)			
	2010	2022	2023	2030	2035	2050	2030	2035	2050
World	5,243	6,060	6,278	4,702	3,231	1,370	5,308	4,454	3,191
Steam coal	4,076	4,848	5,079	3,743	2,423	985	4,262	3,479	2,398
Coking coal	867	961	970	851	724	346	911	861	711
Lignite and peat	300	251	229	107	84	39	135	114	82
North America	818	453	444	132	83	34	214	139	89
Central and South America	81	67	58	20	19	4	32	33	18
Europe –	331	196	163	45	23	5	74	54	33
European Union	220	137	109	23	8	1	36	20	6
Africa –	211	204	206	153	114	35	180	162	138
Middle East –	1	1	1	1		_	1	1	1
Eurasia –	309	426	422	318	281	194	355	343	273
Asia Pacific –	3,493	4,714	4,985	4,035	2,713	1,098	4,451	3,723	2,639
Southeast Asia	318	564	626	481	352	182	573	523	437

Source : IEA, World Energy Outlook 2024 (October 2024) - Table A.14 "Coal production (Mtce)" (P.318)

Zero-carbon-ready building stock will reach 45% in STEPS, 65% in APS, and 80% in NZE in 2050, and 100% in NZE after 2030 for new construction and large-scale repair.

(supplement) IEA definition of "Zero-carbon-ready buildings" : Zero-carbon-ready buildings are buildings that are highly energy efficient and use energy that can be completely decarbonized through direct use of renewable energy or district heating.

Source : IEA, World Energy Outlook 2024 (October 2024), IEA Net Zero Roadmap A Global Pathway to Keep the 1.5°C Goal in Reach (September 2023)

Supply chains for clean energy technologies are concentrated in certain areas, emphasizing the need for supply chain diversity

 Policies Scenario (STEPS) the Announced Pledges Scenario (APS). The report refers to the supply of materials such lithium, copper, nickel, steel, cement, aluminum, and plastic, as well as the production and adoption of key technologies Emphasizes that manufacturing and trade are foundational for the new clean energy economy and expects that the market for key clean technologies is set to nearly triple by 2035, to more than USD 2 trillion. A major wave of manufacturing investment in clean technologies is underway, with many new factories being built across the world. As for trade, Europea Union's total imports bill of fossil fuels and clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies is underway, with many new factories being built across the world. As for trade, Europea Union's total imports bill of fossil fuels and clean energy technologies tilts towards a higher share of clean energy technologies is underway. Industrial strategies in Europe and the United States, especially that of EV are set to alter the outlook China remains the world's manufacturing powerhouse and India makes major strides, becoming a net exprine 2035 Emerging and developing economies in Latin America, Africa and Southeast Asia account for less than 5% value generated from producing clean technologies today, but the opportunities exist Claims the necessity of industrial strategies which takes into account the new parameters and objectives of international trade in clean technology supply chains for clean energy transitions to continue gathering pace Manufacturing 2.5 CO2 emissions S.1 Role of shipping today S.1 United States S.1 Role of shipping today S.2 European Union S.3 Decarbonising shipping S.2 European Union S.3 Decarbonising shipping A I	chnology ✓ ETP2023 pr	ETP2023 Report Overv	view					
 market for key clean technologies is set to nearly triple by 2035, to more than USD 2 trillion. A major wave of manufacturinivestment in clean technologies is underway, with many new factories being built across the world. As for trade, Europead Union's total imports bill of fossil fuels and clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tilts towards a higher share of clean energy technologies tokepoints such as the Strait of Malacca increases, despite growth in overall shipping activity slowing down. Industrial strategies in Europe and the United States, especially that of EV are set to alter the outlook China remains the world's manufacturing powerhouse and India makes major strides, becoming a net exp in 2035 Emerging and developing economies in Latin America, Africa and Southeast Asia account for less than 5% value generated from producing clean technologies today, but the opportunities exist Claims the necessity of industrial strategies which takes into account the new parameters and objectives of international trade in clean technology supply chains for clean energy transitions to continue gathering pace Contents Introduction 2.5 CO2 emissions 1.1 Manufacturing 3.1 United States 3.2 European Union 3.2 European Union 3.2 European Unio	Policies Sc	ETP2023 provides a comprehensive inventory of the current state of the global clean energy supply chain, using the Stated Policies Scenario (STEPS) the Announced Pledges Scenario (APS). The report refers to the supply of materials such as lithium, copper, nickel, steel, cement, aluminum, and plastic, as well as the production and adoption of key technologies						
 China remains the world's manufacturing powerhouse and India makes major strides, becoming a net explicit in 2035 Emerging and developing economies in Latin America, Africa and Southeast Asia account for less than 5% value generated from producing clean technologies today, but the opportunities exist Claims the necessity of industrial strategies which takes into account the new parameters and objectives of international trade in clean technology supply chains for clean energy transitions to continue gathering pace Contents Contents 1.1 Manufacturing 2.5 CO2 emissions 5.1 Role of shipping today 5.2 Impact of clean energy transitions of the shipping 1.2 Trade 3.2 European Union 5.3 Decarbonising shipping 1.3 Competitiveness 3.3 China 4. Industrial strategies and policies 4. Opportunities in emerging markets 6. Strategic considerations 6.1 Policy dimensions 6.2 Secure and resilient supply chains 	market for ke investment i Union's total from less that chokepoints	Emphasizes that manufacturing and trade are foundational for the new clean energy economy and expects that the market for key clean technologies is set to nearly triple by 2035, to more than USD 2 trillion. A major wave of manufacturing investment in clean technologies is underway, with many new factories being built across the world. As for trade, European Union's total imports bill of fossil fuels and clean energy technologies tilts towards a higher share of clean energy technologies from less than 10% in 2023 to 35% in 2035, at the expense of fossil fuels. Traffic through some of the busiest maritime chokepoints such as the Strait of Malacca increases, despite growth in overall shipping activity slowing down.						
 in 2035 Semerging and developing economies in Latin America, Africa and Southeast Asia account for less than 5% value generated from producing clean technologies today, but the opportunities exist Claims the necessity of industrial strategies which takes into account the new parameters and objectives of international trade in clean technology supply chains for clean energy transitions to continue gathering pace Contents Contents Souticok in major markets Claims trategies and policies A India Contents Contents Souticok in major markets Souticok in major markets Souticok in major marke								
 value generated from producing clean technologies today, but the opportunities exist Claims the necessity of industrial strategies which takes into account the new parameters and objectives of international trade in clean technology supply chains for clean energy transitions to continue gathering pace Contents Contents Soutlook in major markets Soutlook Soutlook in major markets 								
international trade in clean technology supply chains for clean energy transitions to continue gathering paceContentsntroduction2.5 CO2 emissions5.1 Role of shipping todayne state of manufacturing and trade3. Outlook in major markets5.2 Impact of clean energy transitions of1.1 Manufacturing3.1 United Statesshipping1.2 Trade3.2 European Union5.3 Decarbonising shipping1.3 Competitiveness3.3 China6. Strategic considerations1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains		e generated from producing clean technologies today, but the						
ContentsIntroduction2.5 CO2 emissions5.1 Role of shipping todayintroduction3. Outlook in major markets5.2 Impact of clean energy transitions ofintroducting3.1 United Statesshippingintroducturing3.2 European Union5.3 Decarbonising shippingintroducturing3.3 China6. Strategic considerationsintroduction3.4 India6.1 Policy dimensionsintroducturing4. Opportunities in emerging markets6.2 Secure and resilient supply chains		necessity of industrial strategies which takes into accou	nt the new parameters and objectives of					
ne state of manufacturing and trade3. Outlook in major markets5.2 Impact of clean energy transitions of1.1 Manufacturing3.1 United Statesshipping1.2 Trade3.2 European Union5.3 Decarbonising shipping1.3 Competitiveness3.3 China6. Strategic considerations1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsIobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	✓ Claims the	•	· · · · · · · · · · · · · · · · · · ·					
1.1 Manufacturing3.1 United Statesshipping1.2 Trade3.2 European Union5.3 Decarbonising shipping1.3 Competitiveness3.3 China6. Strategic considerations1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	✓ Claims the international	•	•					
1.2 Trade3.2 European Union5.3 Decarbonising shipping1.3 Competitiveness3.3 China6. Strategic considerations1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	e of Contents	al trade in clean technology supply chains for clean energ	y transitions to continue gathering pace					
1.3 Competitiveness3.3 China6. Strategic considerations1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	e of Contents ntroduction	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions	y transitions to continue gathering pace					
1.4 Industrial strategies and policies3.4 India6.1 Policy dimensionsobal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	 ✓ Claims the international Contents ntroduction e state of manufacturing and 1.1 Manufacturing 	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions d trade 3. Outlook in major markets	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping					
obal outlook4. Opportunities in emerging markets6.2 Secure and resilient supply chains	 ✓ Claims the international int	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions d trade 3. Outlook in major markets 3.1 United States 3.2 European Union	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping					
	 ✓ Claims the international ✓ Claims the international	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions d trade 3. Outlook in major markets 3.1 United States 3.2 European Union 3.3 China	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping 6. Strategic considerations					
2.1 Methodological approach 4.1 Enabling factors for manufacturing 6.3 Affordable technologies and materi	✓ Claims the international Contents Introduction the state of manufacturing and 1.1 Manufacturing 1.2 Trade 1.3 Competitiveness 1.4 Industrial strategies and	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions d trade 3. Outlook in major markets 3.1 United States 3.2 European Union 3.3 China 4 policies 3.4 India	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping 6. Strategic considerations 6.1 Policy dimensions					
	Le of Contents Introduction ne state of manufacturing and 1.1 Manufacturing 1.2 Trade 1.3 Competitiveness 1.4 Industrial strategies and lobal outlook	al trade in clean technology supply chains for clean energ 2.5 CO2 emissions d trade 3. Outlook in major markets 3.1 United States 3.2 European Union 3.3 China 4 policies 3.4 India 4. Opportunities in emerging markets	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping 6. Strategic considerations 6.1 Policy dimensions 6.2 Secure and resilient supply chains					
	Claims the international in	al trade in clean technology supply chains for clean energy 2.5 CO2 emissions d trade 3. Outlook in major markets 3.1 United States 3.2 European Union 3.3 China 4 policies 3.4 India 4. Opportunities in emerging markets 4.1 Enabling factors for manufacturing	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping 6. Strategic considerations 6.1 Policy dimensions 6.2 Secure and resilient supply chains 6.3 Affordable technologies and materials					
2.3 Manufacturing4.2 The prospects for manufacturing6.5 Overarching strategic policy responsion2.4 Inter-regional trade5. International shipping	✓ Claims the international Contents Introduction he state of manufacturing and 1.1 Manufacturing 1.2 Trade 1.3 Competitiveness 1.4 Industrial strategies and lobal outlook 2.1 Methodological approac 2.2 Demand	al trade in clean technology supply chains for clean energ2.5 CO2 emissionsd trade3. Outlook in major markets 3.1 United States 3.2 European Union 3.3 China 4 policiesd policies3.4 India 4. Opportunities in emerging markets 4.1 Enabling factors for manufacturing investment	5.1 Role of shipping today 5.2 Impact of clean energy transitions on shipping 5.3 Decarbonising shipping 6. Strategic considerations 6.1 Policy dimensions 6.2 Secure and resilient supply chains 6.3 Affordable technologies and materials 6.4 People-centred transitions					

Chapter	Chart number	Chart
	Figure 1.1	Global economic value added in manufacturing industry
	Figure 1.2	Manufacturing sector investment by country/region, 2005-2023
	Figure 1.3	Global investment in clean energy technology and materials manufacturing, 2022-2023
	Figure 1.4	Global investment in clean energy manufacturing associated with announced projects, 2022-2030
	Figure 1.5	Manufacturing capacity and additions associated with announced projects for selected clean technologies
	Figure 1.6	Net manufacturing capacity additions for selected clean energy technologies by country/region, 2020-2023
	Figure 1.7	Net manufacturing capacity additions for solar PV, wind and battery components by country/region, 2022-2023
	Figure 1.8	Global demand and manufacturing capacity by country/region for selected clean energy technologies based on announced projects, 2023-2030
	Figure 1.9	Global net manufacturing capacity additions for selected materials, 2020-2023
	Figure 1.10	Global installed manufacturing capacity and announced capacity additions for selected materials, 2023-2030
Ch.1	Figure 1.11	Installed manufacturing capacity by country/region, 2023
	Figure 1.12	Production of selected clean energy technologies and materials relative to domestic demand by country/region, 2023
	Figure 1.13	Energy employment in selected technology areas, 2022
	Figure 1.14	Energy employment in selected energy technologies by region, 2022
	Figure 1.15	Shares of physical goods in global trade, 2023
	Figure 1.16	Global fossil fuel exports, 1973-2023 and share of exports in total energy supply, 2023
	Figure 1.17	Global exports of selected clean technologies and materials, 2010-2023
	Figure 1.18	Global exports of selected non-energy goods, 2010-2023
	Figure 1.19	Export shares by mass for selected products and materials for major exporters, 2010-2023
	Figure 1.20	Global shipping capacity by type of cargo vessel, 1980-2023
	Figure 1.22	Indicative capital costs for selected clean energy technologies by country/region, 2023
	Figure 1.23	Indicative capital costs for selected materials production processes, 2023

Chapter	Chart number	Chart
	Figure 1.24	Global average levelised cost of production by cost factor for selected clean energy technologies and regional variation, 2023
	Figure 1.25	Levelised cost of production for heat pumps and retail price in selected countries/regions by type, 2023
	Figure 1.26	Sensitivity of the levelised cost of production to the costs of energy and materials for selected clean energy technologies, 2023
	Figure 1.27	Levelised cost of production for selected materials by technology
	Figure 1.28	Levelised cost of production for selected clean energy technologies and materials by country/region, 2023
	Figure 1.29	Levelised cost of production for batteries and solar PV modules by origin of components in the United States and the European Union, 2023
	Figure 1.31	Market size for selected clean energy technologies and associated materials, 2010-2023
	Figure 1.32	Market size for selected clean energy technologies and associated materials by country or region, 2010-2023
	Figure 1.33	Shares of selected clean energy technologies and materials in total market, 2023
	Figure 1.34	Sectoral composition of manufacturing value added as a share of GDP for the top ten manufacturing countries, 2023
Ch.1	Figure 1.35	Geographic distribution of value added in key sectors of relevance to clean technology manufacturing, 2023
	Figure 1.36	Domestic value added and exports for the steel and automobile industries in selected countries, 2021
	Figure 1.38	Impact of Inflation Reduction Act financial support for production on the manufacturing cost of solar PV modules and battery cells, 2025
	Figure 1.39	Estimated rate of financial support provided by governments across selected manufacturing sub-sectors, 2005-2022
	Figure 1.40	Key factors influencing the trade of manufactured goods
	Figure 1.41	Weighted average global import tariffs on selected energy technologies and related materials
	Figure 1.42	Ad valorem tariffs applied to the global trade flows of selected materials and clean energy technologies, 2022
	Figure 1.43	Estimated ad valorem equivalents of non-tariff measures for key energy technologies and products
	Figure 1.44	Global trade cost of selected clean energy technologies and materials
	Figure 1.45	Global weighted average share of import tariffs and non-tariff measures on import prices of solar PV modules, aluminium and wind nacelles, 2023
	Figure 1.46	Spending on R&D in selected countries/regions, 2015-2023

Chapter	Chart number	Chart
	Figure 2.1	Market size of key clean energy technologies and components by region and scenario, 2023-2050
	Figure 2.2	Global demand for EVs, batteries and components by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2050
	Figure 2.3	Global demand for solar PV components by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2050
	Figure 2.4	Global demand for wind turbines by country/region in the Stated Policies and Announced Pledges Scenarios, 2023- 2050
	Figure 2.5	Global demand for heat pumps by country/region in the Stated Policies and Announced Pledges Scenarios, 2023- 2050
	Figure 2.6	Selected destinations of air conditioners manufactured in China by energy efficiency class, 2021
	Figure 2.7	Global demand for electrolysers by country/region in the Stated Policies and Announced Pledges Scenario, 2023- 2050
Ch.2	Figure 2.8	Market size of selected materials by country/region and scenario, 2023-2050
C 1.2	Figure 2.9	Global demand for ammonia by application and scenario, 2010-2050
	Figure 2.10	Global demand for steel and aluminium for clean technology manufacturing by scenario, 2023-2050
	Figure 2.11	Announced annual manufacturing capacity as share of deployment in 2035 by technology and scenario
	Figure 2.12	Announced annual capacity for near-zero emissions production of iron, primary aluminium and ammonia as share of deployment in 2035 by technology and scenario
	Figure 2.13	Annual manufacturing capacity for EVs, batteries and components by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.14	Annual manufacturing capacity for solar PV components by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.15	Annual manufacturing capacity for wind turbine components by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.16	Annual manufacturing capacity for heat pumps by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035

Source : IEA Energy Technology Perspective 2024 (November 2024)

Chapter	Chart number	Chart
	Figure 2.17	Share of heat pump sales by technology in selected countries, 2023
	Figure 2.18	Annual manufacturing capacity for electrolysers by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.19	Production of key materials by country/region in 2023, and in the Stated Policies and Announced Pledges Scenarios, 2035
	Figure 2.20	Global materials production with near-zero emissions and conventional technologies by scenario, 2023-2035
	Figure 2.21	Indicative levelised cost of production for selected near-zero emissions materials production routes by country/region in the Announced Pledges Scenario, 2035
	Figure 2.22	Average annual investment in manufacturing of key clean energy technologies and near-zero emissions materials production by scenario, 2023-2050
Ch.2	Figure 2.23	Average annual investments in manufacturing of key clean technologies by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.24	Average annual investment in near-zero emissions production of key materials by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 2.25	Global energy demand by fuel type in the Announced Pledges Scenario and share of demand provided by fossil fuel imports by scenario, 2023-2050
	Figure 2.26	Inter-regional trade value of fossil fuels and key clean energy technologies by scenario, 2023-2050
	Figure 2.27	Inter-regional trade value for key clean energy technologies by type and scenario, 2023-2050
	Figure 2.29	Net trade in key clean energy technologies and fossil fuels by selected country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2050
	Figure 2.30	Net trade volumes for key materials by country/region in the Stated Policies and Announced Pledges Scenarios, 2023-2050
	Figure 2.31	Global CO2 emissions along manufacturing supply chains in the Net Zero Emissions by 2050 Scenario, 2023-2050

Chapter	Chart number	Chart
	Figure 3.1	Net trade balances for key clean energy technologies by market and scenario, 2023-2035
	Figure 3.2	Share of announced investments in clean technology manufacturing in the United States by quarter, Q1 2018-Q2 2024
	Figure 3.3	Share of announced investments in clean technology manufacturing in the United States and per capita income by region
	Figure 3.4	US market and import-export balance for EVs, batteries and selected components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.5	Total production cost of EVs and batteries in the United States compared with imports and US import costs by contributing factor in the Announced Pledges Scenario, 2035
	Figure 3.6	US EV and battery manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.7	Cost breakdown of domestically produced and imported EVs in the United States
	Figure 3.8	US market and import-export balance for solar PV modules and components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
Ch.3	Figure 3.9	Total production cost of solar PV in the United States compared with imports and US import costs by contributing factor in the Announced Pledges Scenario, 2035
	Figure 3.10	US solar PV manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.11	US market and import-export balance for wind turbine nacelles and blades in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.12	Total production cost of wind turbine nacelles and blades in the United States compared with imports and US import costs by contributing factor in the Announced Pledges Scenario, 2035
	Figure 3.13	US wind turbine component manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.14	Demand for and production of key materials and intermediate commodities in the United States, historically and in the Stated Policies and Announced Pledges Scenarios, 2015-2035
	Figure 3.15	Scrap as a share of metallic inputs for steel and aluminium production in selected countries/regions, historical and in the Announced Pledges Scenario, 2000-2035

Chapter	Chart number	Chart
	Figure 3.16	Impact of the Inflation Reduction Act production tax credit for hydrogen on the levelised cost of production of iron and ammonia by technology in the Stated Policies Scenario, 2030
	Figure 3.17	Car sales in emerging markets and developing economies by manufacturer headquarters' location, 2023
	Figure 3.18	Impact of provisional EU duties on the price of a compact electric SUV imported from China, 2023
	Figure 3.19	Production of cars in the European Union by market segment in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.20	EU market and import-export balance for EVs, batteries and selected components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.21	Total production cost of EVs and batteries in the European Union compared with imports and EU import costs in the Announced Pledges Scenario, 2030
	Figure 3.22	Global average battery levelised cost of production per cost factor and potential impact of innovation on battery costs in the European Union, 2023
Ch.3	Figure 3.23	EU EV and battery manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.24	EU market and import-export balance for solar PV in the Stated Policies and Announced Pledges Scenario, 2023-2035
	Figure 3.25	EU solar PV module and component manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.26	Total production cost of solar PV in the European Union compared with imports and EU import costs in the Announced Pledges Scenario, 2035
	Figure 3.27	EU market and import-export balance for wind turbine components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.28	Total production cost of wind turbine components in the European Union compared with imports and EU import costs in the Announced Pledges Scenario, 2035
	Figure 3.29	EU wind turbine component manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035

Chapter	Chart number	Chart
	Figure 3.30	EU market and import-export balance for heat pumps in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.31	Raw material costs for making a heat pump using HFC R-410A F-gas and propane following the current EU F-Gas quota allocation, 2023
	Figure 3.32	Ammonia and urea production and trade in the European Union, 2011-2023
	Figure 3.33	Materials demand and production in the European Union, historical and in the Stated Policies and Announced Pledges Scenarios, 2015-2035
	Figure 3.34	Average age of steelmaking facilities by country/region
	Figure 3.35	Indicative range of the levelised cost of production of steel in the European Union and costs of imports from Brazil in the Announced Pledges Scenario, 2035
	Figure 3.36	Value added by manufacturing and industry in China
	Figure 3.37	Net exports and imports by product categories in China, 2023
Ch.3	Figure 3.38	Utilisation rate for manufacturing selected clean technologies and materials in China and the rest of the world, 2023
	Figure 3.39	Chinese exports of EVs and batteries by destination in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.40	Opportunities to exploit the potential production from announced battery cell manufacturing facilities in China, 2030
	Figure 3.41	Chinese exports of solar PV modules and cells by destination in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.42	Opportunities to exploit the potential output from announced solar PV module manufacturing facilities in China, 2030
	Figure 3.43	Chinese exports of wind nacelles and blades by destination in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.44	Chinese exports of heat pumps and electrolysers by destination in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.45	Production and trade in the steel supply chain in China, historical and in the Stated Policies and Announced Pledges Scenarios, 2010-2035

Chapter	Chart number	Chart
	Figure 3.46	Production and trade in the aluminium supply chain in China, historical and in the Stated Policies and Announced Pledges Scenarios, 2010-2035
	Figure 3.47	Indian market for EVs, batteries and components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.48	Total production cost of electric cars, batteries and components in India compared with imports and Indian import costs in the Announced Pledges Scenario, 2035
	Figure 3.49	Indian electric car, battery and component manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.50	Indian market and import-export balance for solar PV modules and components in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.51	Total production cost of solar PV modules and components in India compared with imports and Indian import costs in the Announced Pledges Scenario, 2035
Ch.3	Figure 3.52	Indian solar PV and component manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.53	Indian market and import-export balance for electrolysers in the Stated Policies and Announced Pledges Scenarios, 2030-2035
	Figure 3.54	Total production cost of electrolysers in India compared with imports and Indian import costs in the Announced Pledges Scenario, 2035
	Figure 3.55	Indian electrolyser manufacturing investment and capacity in the Stated Policies and Announced Pledges Scenarios, 2023-2035
	Figure 3.56	Demand and production for key materials in India, historically and in the Stated Policies and Announced Pledges Scenarios, 2015-2035
	Figure 3.57	Average annual investment in near-zero emissions materials production in India, China and the rest of the world in the Announced Pledges Scenario, 2024-2050

Chapter	Chart number	Chart
	Figure 4.5	Regional/country shares in clean technology production in the Stated Policies Scenario, Announced Pledges Scenario and High Potential Case, 2023-2035
	Figure 4.7	Top three scoring countries for enabling factors for solar PV polysilicon and wafer manufacturing in Africa, Latin America and Southeast Asia
	Figure 4.9	Market for PV modules and components in Southeast Asia in the Announced Pledges Scenario and High Potential Case, 2035-2050
	Figure 4.11	Relative magnitude of crude steel production in Latin America, Africa and Southeast Asia, 2023
	Figure 4.13	Top three scoring countries for enabling factors for wind turbine manufacturing in Africa, Latin America and Southeast Asia
	Figure 4.14	Market for wind blades in Brazil and other Latin American countries in the Announced Pledges Scenario and High Potential Case, 2035-2050
	Figure 4.17	Top three scoring countries for enabling factors for EV and battery manufacturing in Africa, Latin America and Southeast Asia
Ch.4	Figure 4.18	Southeast Asian market and import-export balance for EVs, batteries and components in the Announced Pledges Scenario and High Potential Case, 2035-2050
	Figure 4.19	North African market and import-export balance for EVs, batteries and components in the Announced Pledges Scenario and High Potential Case, 2035-2050
	Figure 4.21	Latin America market and import-export balance for batteries and components in the Announced Pledges Scenario and High Potential Case, 2035-2050
	Figure 4.22	Import and export value of air conditioners in selected cooling markets, 2022
	Figure 4.23	Regional production and apparent consumption of crude steel, 2023
	Figure 4.24	Raw material availability for steel production in selected countries, 2022
	Figure 4.25	Global port throughput of dry bulk carriers, 2023
	Figure 4.27	Top three scoring countries for enabling factors for iron and steel production in Africa, Latin America and Southeast Asia
	Figure 4.29	Iron and steel net trade in Africa, historical and in the Announced Pledges Scenario and High Potential Case, 2010-2050

Chapter	Chart number	Chart
	Figure 4.30	Largest users of fertilisers in Africa, Latin America and Southeast Asia and in selected major markets, and global ammonia production by country, 2023
	Figure 4.33	Top three scoring countries for enabling factors for ammonia production in Africa, Latin America and Southeast Asia
Ch.4	Figure 4.34	Near-zero emissions ammonia trade by operational date and status based on announced export-oriented projects in Africa, 2023
	Figure 4.35	Ammonia production and net trade in Africa, historical and in the Announced Pledges Scenario and High Potential Case, 2010-2050
	Figure 4.36	Ammonia production and trade in Latin America, historical and in the Announced Pledges Scenario and High Potential Case, 2010-2050
	Figure 5.1	Global maritime trade in value and in mass, 1980-2023, and shares by cargo type, 2023
	Figure 5.2	Country shares of shipbuilding, ownership and scrappage, 2023
	Figure 5.3	Global energy-related CO2 emissions in shipping, 2005-2023, and energy use and international activity by ship type, 2023
	Figure 5.4	Main ports by cargo type and throughput, 2023
	Figure 5.8	Shares of types of goods in global international maritime trade by value and mass, 2023
	Figure 5.9	Trade flows of clean energy technologies between regions in value terms, 2023
	Figure 5.10	Trade flows of fossil fuels between regions in value terms, 2023
Ch.5	Figure 5.11	Trade flows of selected materials between regions in value terms, 2023
	Figure 5.12	Shares of global traded mass and value for clean energy technologies, associated materials and fossil fuels, 2023
	Figure 5.13	Shipping freight rates for container, and charter rates for bulk and tanker, 2023
	Figure 5.14	Container freight rates and cost components for the Shanghai-Rotterdam route, 2020-2024
	Figure 5.15	International maritime trade of goods in mass and value terms compared to GDP by scenario
	Figure 5.16	Changes to international shipping activity by product category in the Stated Policies Scenario, 2023-2050
	Figure 5.17	Changes in total international shipping activity in the Announced Pledges Scenario and the Net Zero Emissions by 2050 Scenario versus the Stated Policies Scenario, by product category, 2035 and 2050

Chapter	Chart number	Chart
	Figure 5.18	International shipping activity by type of vessel and scenario, 2015-2050
	Figure 5.19	Global oil tanker fleet and new commissions by scenario, 2023-2050
	Figure 5.20	Share of global seaborne trade transiting selected chokepoints, 2023
	Figure 5.21	Share of global trade by value passing through selected chokepoints by commodity and location, 2023
	Figure 5.22	Main inter-regional trade flows for key clean energy technologies in the Stated Policies Scenario, 2035
	Figure 5.23	Share of total maritime trade value passing through selected chokepoints by product category in the Stated Policies and Announced Pledges Scenarios, 2035
	Figure 5.24	Utilisation rate of container ports in selected countries/regions, 2023
	Figure 5.25	Total lifetime cost of ownership of a representative new bulk carrier and cheapest alternative propulsion option in the Announced Pledges Scenario, 2035
	Figure 5.26	Global energy-related CO2 emissions in international shipping and drivers of change in the Stated Policies Scenario, 2023-2050
Ch.5	Figure 5.27	Global energy-related CO2 emissions in international shipping by scenario and reductions in the Announced Pledges Scenario relative to the Stated Policies Scenario by mitigation measure
	Figure 5.28	Global energy consumption and energy-related CO2 emissions in international shipping in the Stated Policies Scenario and Announced Pledges Scenario, 2023-2050
	Figure 5.29	Running costs of a container ship powered by fuel oil and ammonia and global average cost for near-zero emissions ammonia production in the Announced Pledges Scenario, 2023-2050
	Figure 5.30	Change of average international shipping running costs for container ships and bulk carriers in the Stated Policies and Announced Pledges Scenarios, 2023-2050
	Figure 5.31	Indicative levelised production cost of electrolytic methanol and ammonia by component in selected regions in the Announced Pledges Scenario, 2030
	Figure 5.33	Global demand for bioenergy and waste by sector in the Announced Pledges Scenario, 2023-2050
	Figure 5.34	Production costs for selected biofuels in the Announced Pledges Scenario, 2035
	Figure 5.35	Vessel count and average heavy fuel oil price at selected ports, 2023

Chapter	Chart number	Chart
	Figure 5.37	Cost of producing electrolytic ammonia and maritime traffic at selected ports in the Announced Pledges Scenario, 2030
Ch.5	Figure 5.38	Production and transport costs at selected major ports for ammonia and methanol by local or imported source in the Announced Pledges Scenario, 2030
	Figure 5.39	Indicative levelised cost of supplying electrolytic ammonia for bunkering at major US ports with and without financial support from the Inflation Reduction Act in the Announced Pledges Scenario, 2030
	Figure 6.2	Global net energy sector CO2 emissions in the Net Zero Emissions by 2050 Scenario and in a Delayed Deployment Case, 2020-2050
	Figure 6.3	Shares of the value of exports of clean energy technologies, materials and fossil fuels by country/region in the Announced Pledges Scenario, 2023 and 2035
	Figure 6.4	Change in global market concentration of exports for selected commodities between the period 1999-2008 and the period 2009-2018
	Figure 6.5	Global liquefied natural gas liquefaction capacity additions and EU liquefied natural gas import prices
	Figure 6.6	Project lead times for selected global clean energy technology value chains
	Figure 6.7	Average annual investment in selected clean technologies and near-zero emissions materials production by scenario, 2023-2035
Ch.6	Figure 6.8	Positive feedbacks between innovation and market growth in the early stages of technology deployment
	Figure 6.9	Global average production cost by number of doublings of cumulative deployment of selected technologies by scenario
	Figure 6.10	Global public energy RD&D, energy-related venture capital and clean energy patents by country/region and type of energy, 2015-2023
	Figure 6.11	Global average aluminium intensity of solar PV manufacturing in the Net Zero Emissions by 2050 Scenario, 2023-2050
	Figure 6.12	Global car sales per capita, historical and by scenario, 2000-2050
	Figure 6.13	Avoidance of primary critical mineral demand through battery re-use and recycling in the Net Zero Emissions by 2050 Scenario compared with the Stated Policies Scenario, 2023-2040
	Figure 6.14	EMDEs' share of global investment in clean technology manufacturing and near-zero emissions materials production by scenario, 2023-2050

Chapter	Chart number	Chart
	Figure 6.15	Change in employment in selected energy-related sectors in the Stated Policies and Announced Pledges Scenarios, 2022 to 2030
	Figure 6.16	European chemical exports by mass and share of global trade value, 2000-2022
Ch.6	Figure 6.17	Chemical industry expenditure by type in selected regions, 2011-2023
	Figure 6.18	Average R&D spending as share of total revenue for the largest automotive parts manufacturers in selected regions, 2011-2023
	Figure 6.19	Ammonia demand by use and region in the Announced Pledges Scenario, 2023-2050

NGFS

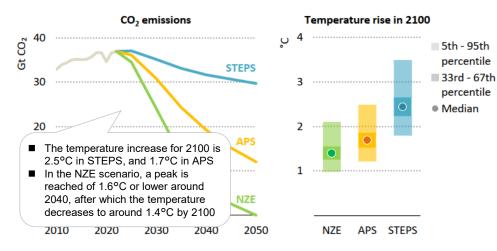
NGFS was established as an international climate risk management platform for central banks and regulatory authorities; it released its Phase III scenarios in September '22, which were updated with pledges and renewable energy trends in each country from COP26

Background behind establishment	Established in December 2017 through efforts led by central banks and financial supervisors. It was established to be an international platform for central banks and financial supervisors to consider financial supervisory measures toward climate change-related risk management. Japanese participants are the Financial Services Agency and Bank of Japan
Description of activities	Description of activities: Release of six recommendations for measures against climate change risk (April 2019) and climate change scenarios (June 2020); the Phase III climate change scenarios were announced in September 2022
Targets	Central banks, financial supervisors, policy makers
Scenario overview	For the NGFS Phase III scenarios made public in September 2022, the scenarios were released after updating the database forming the basis of the scenario assumptions with information such as pledges and the latest trends for renewable energy sources from COP26, and macroeconomic impact of loss due to extreme weather and chronic physical risks, which includes the latest GDP and demographic information (does not take into account the Russian invasion of Ukraine and its aftermath, as these are still unclear and thus difficult to model)
Assumed activity scope for NGFS scenarios	 Since the assumed readers are central banks, financial supervisors, and policy makers, NGFS scenarios are not expected to be used frequently for scenario analysis by private companies in non-financial sectors For transition risk parameters that are referenced frequently such as carbon price, energy mix, fuel prices, the information from IEA scenario (NZE, APS, STEPS) are also available IEA, SSP, PRI's transition risk parameters can be used as a complement Although the number of physical risk parameters are limited, it may be used together with water risk tools (AQUEDUCT) and RCP On the other hand, the opportunities to reference NGSF scenarios for climate change-related risk management in financial institutions may increase

In 2021, the NGFS recategorized scenarios into 6 types; the same categories will also be used in 2022 Climate scenario framework

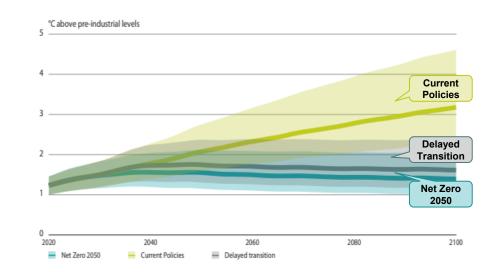
Scenarios are designed to show the scope of transition and physical risk • 6 scenarios categorized through the climate scenario framework ٠

Trans	ition	risk	Ach Achieved	nievement targe		Transiti
Disorderly Transiti	-	policie	Disorderly al and unpredicta es are implemen ve climate targets	ted to	 <u>Too little, too late</u> Physical risk and disorderly transition as countries fail to adopt sufficient policies for achieving climate targets 	Ī
derly Orderly Transition path	-	starte	Orderly to reduce emiss d immediately in ve climate targets	order to	 Hot house world Emissions continue to increase with no measures implemented against physical risk 	
					Physical ris	
Risk fa	actor			In	nplications	Scei na
Transitio	on ris	k Lo	by if an orderly transition path is established, high if it is disorderly			1 4
Physica	al risk	Lo	w if climate targe	ts are achie	eved, high if they are not	Der
Scenar elemer				0	verview	2 Net 20
Orderl	ly				plemented immediately, and net zero Fransition and physical risks are both low	3 Belov
Disorde	erly				be implemented before 2030; transition rapid policy responses	4 Dela Tran
Hot Hou	Hot House		missions continue to increase until 2080 with no emission reduction			5 NE
World		•	es implemented; r more	physical risł	increases due to the temperature rising	Cui 6 Pol
Too Litt Too lat			t physical risks. T		uncoordinated transition fails nt is explored for the first time in this	Fragn 7 W


Physical risk

	Scenario name	Overview
1	Low Demand	Difficult scenario to achieve +1.5°C by the end of this century
2	Net Zero 2050	Net Zero 2050 is achieved through policies and innovation, with certain areas such as the US, EU, and Japan reaching targets of net zero emissions for all greenhouse gases
3	Below 2°C	Policies are gradually made stricter, and the 2°C and below target is reached at a rate of 67%
4	Delayed Transition	Annual emissions fail to be reduced by 2030, with limited reductions in CO2
5	NDCs	Physical risk is limited to a certain extent when each country achieves its established emission reduction targets
6	Current Policies	Only current policies are implemented; physical risk is expected to be high
7	Fragmented World	Scenarios in which climate change policies are implemented in a fragmented manner both intertemporally and geographically, resulting in more negative impacts.

The NGFS scenarios characterize physical risks and transition risks in terms of macro-financial risk overall based on policy ambition, policy response, and changes in and degree of use of technologies


				[Legend] : L	ow risk, i Medium	risk, : High risk		
		Physical risk	Transition risk					
Category	ا Scenario	Policy ambition	Policy response	Changes in technology	Use of CO2 removal	Variation in regional policies		
	Low Demand	1.4 °C (1.6 °C)	Immediate	Fast change	Medium use	Medium variation		
Orderly	Net Zero 2050	1.4 °C (1.6 °C)	Immediate	Fast change	Medium-high use	Medium variation		
	Below 2°C	1.7 °C (1.8 °C)	mmediate and smooth	Moderate change	Medium use	Low variation		
Disorderly	Delayed Transition	1.7 °C (1.8 °C)	Delayed	Slow/Fast change	Medium use	High variation		
Hot house world	Nationally Determined Contributions (NDCs)	2.4 °C (2.4 °C)	NDCs	Slow change	Low use	Medium variation		
	Current Policies	2.9 °C (2.9 °C)	None – current policies	Slow change	Low use	Low variation		
Too-little-too- late	Fragmented World	2.3 °C (2.3 °C)	Delayed and Fragmented	Slow/Fragmented change	Low-medium use	High variation		

Both the IEA and NGFS use Integrated Assessment Models (IAM) to show transition paths for various scenarios; while the details of the paths differ, consistent results are shown

*For the temperature zones, the maximum temperature increase is listed with a confidence level of 50% and 33% to 67%

シナリオ名	概要
2.4°C Stated Policies Scenario (STEPS)	 Realistically examines the status of current policies and shows the direction of the energy system in the case where no new policies are introduced
1.7°C Announced Pledges Scenario (APS)	 Considers all climate change-related pledges announced by national governments, including NDC and long-term net zero goals, and assumes that these will all be achieved completely and on time
1.4°C Net Zero Emissions by 2050 Scenario (NZE)	 There is a rapid increase in green energy policies and investment, and developed countries reach net zero ahead of other countries Achievement of universal access to energy and significant improvement in air quality by 2030

シナリオ名	概要
3°C+ Current Policies	Only current policies are implemented; physical risk is expected to be high The temperature increase exceeds 3°C, bringing on serious and irreversible impact
1.6°C Delayed Transition	Annual emissions fail to be reduced by 2030, with limited reductions in CO2
1.4°C Net Zero 2050	Net Zero 2050 is achieved through policies and innovation, with certain areas such as the US, EU, and Japan reaching targets of net zero emissions for all greenhouse gases
■ The average temp	erature rises in all scenarios, exceeding 3°C in the

- The average temperature rises in all scenarios, exceeding 3°C in the Current Policies Scenario
- Changes in climatic conditions affect the productivity of manual labor, leading to serious and irreversible effects

The available parameters in the NGFS Phase 3 Scenario Explorer

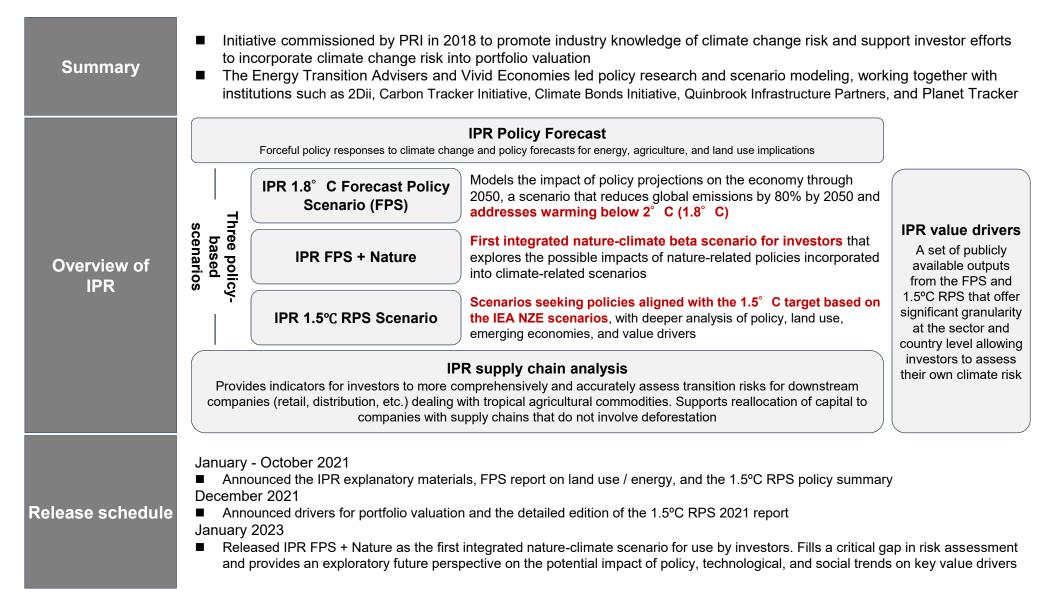
NGFS Phase 4 Scenario Explorer

Issuing Agency	NGFS					
Scenario	Low Demand / Net Zero 2050 / Below 2°C / Delayed Transition / Nationally Determined Contributions (NDCs) / Current Policies / Fragmented World					
Time Horizon	~2100, every 1 years (historical data varies by scenario)					

List of available parameters

Category	Details	Category	Details
Macro- economic	GDP、PopulationMacro-economic climate damage (GDP change)		Carbon sequestration (CCS, land use)
Climate	 Temperature (global mean)、Surface temperature Damage factor Emissions (BC、C2F6、CF4、CH4、CO、CO2、Fガス、HFC、Kyoto gases、 N2O、NH3、NOX、OC、PFC、SF6、Sulfur、VOC) Concentration (CH4、CO2、N2O) Padiative factories 	Energy	 Trade (biomass, gas, coal, oil) Production (primary energy, secondary energy, final energy) Production (cement, chemicals, non-ferrous metals, steel) Energy supply investment (CO2 transport and storage, electricity, extraction, heat, hydrogen, liquids, other)
	 Radiative forcing Carbon (Industry, residential and commercial, transportation, SCC, supply) Primary energy (biomass, coal, gas, oil) 		 Electricity (biomass, coal, gas, geothermal, hydro, nuclear, solar, wind) Gas (biomass, coal) Hydrogen (Biomass, coal, electricity, gas) ' Liquids (biomass, coal, gas, oil)
Price	 Secondary energy (electricity, gas, hydrogen, liquid fuels, solid fuels) Final energy (industry, residential and commercial, transportation) Industry (cement) Agriculture (corn, Non-energy crops, soybean, wheat) 	Agricultural crops and forestry	 Agricultural demand/production Forestry demand/production Yield (cereal, oil crops, sugar crops) Fertilizer use (nitrogen, phosphorus) Ford demand (crops livesteek)
	• Electricity (biomass, coal, gas, geothermal, hydro, nuclear, oil, other, solar, biomass, wind)		Food demand (crops, livestock)
Capacity	 Gas (biomass, coal, hydrogen, liquids) Capacity additions (biomass, coal, gas, geothermal, hydro, nuclear, oil, solar, biomass, wind) 	Other	Government tax revenueWater consumptionLand cover

NGFS CA Climate Impact Explorer


Issuing Agency	NGFS	Absolute change in mean air temperature in Japan This graph them from absolute independing the Mannuk Temperature (responsed to degreen Celulus) period 986-3006, based on the NCES current policies exemption to the reference period 986-3006, based on the NCES current policies exemption.	
Scenario	RCP2.6 / RCP4.5 / RCP6.0 / RCP8.5 / NGFS Low Demand / NGFS Net Zero 2050 / NGFS Below 2°C / NGFS Delayed Transition / NGFS Nationally Determined Contributions (NDCs) / NGFS Current Policies / NGFS Fragmented World / CAT Current Policies	Compare to alternative scanneds Mean Air Temperature in "C	- NGFS of policies
Time horizon	~2100, every 1 years	6.0 2000 2040 2050 2050 2050 2050 2050 205	Deseline 1 Creferenci 1986-200

List of available parameters

Category	Details	Category	Details
Economic damages	 Annual expected damage from river floods Annual expected damage from tropical cyclones 1-in-100 year expected damage from tropical cyclones 		 Relative humidity Specific humidity Precipitation
Peril-specific hazards	 Land fraction annually exposed to river floods Annual maximum river flood depth Land fraction annually exposed to crop failures Fraction of population annually exposed to crop failures Land fraction annually exposed to wildfires 	Climate	 Snowfall Atmospheric pressure (surface) Atmospheric pressure (adjusted to sea level) Downwelling longwave radiation Wind speed
	 Fraction of population annually exposed to wildfires Land fraction annually exposed to heatwaves Fraction of population annually exposed to heatwaves 	Mean air temperature	Daily maximum air temperatureDaily minimum air temperature
Agriculture	 Soil moisture Annual mean maize yield Annual mean rice yield Annual mean soy yield 	Freshwater	 Surface runoff River discharge Maximum of daily river discharge Minimum of daily river discharge
	Annual mean wheat yield	Labor productivity	Reduced labor productivity due to heat stress

Outline of IPR scenario

IPR (the Inevitable Policy Response) is an initiative for supporting investor efforts to incorporate climate change risks into portfolio valuation; in December 2021, it released detailed information for the 1.5°C scenario group

GHG emissions, CO2 removal, New Deployment, Capex, Capacity, Technology stock, Price

Parameter			Reg	gion		
Category	Variable	Industry	World	Japan	Unit	Time Horizon
GHG Emission	CO2 Emission	Power, Buildings, Transport, Other Energy, Industry, Total, Land use	•	•	Mt	2020-2050
000	BECCS	Power, Industry, Total	•	•	Mt	2020-2050
CO2 removal	DACS	Total	•	-	Mt	2020-2050
	Electricity Generation	Power, Hydrogen		•	GW	2020-2050
New Dealer and	Vehicles	Transport		•	Vehicles (thousands)	2020-2050
New Deployment	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery capacity	Total	•	•	GWh	2020-2050
	Electricity generation	Power, Hydrogen		•	USD (million)	2020-2050
Сарех	Vehicles	Transport		•	USD (million)	2020-2050
	Heating systems	Buildings	•	•	USD (million)	2020-2050
Capacity	Electricity generation	Power		•	GW	2020-2050
	Electricity	Hydrogen		•	GW	2020-2050
Technology Stock	Vehicles	Transport		•	Vehicles (thousands)	2020-2050
	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery	-		-	USD / kWh	2020-2050
	Nickel	-		-	USD / tonne	2020-2050
	Copper	-		-	USD / tonne	2020-2050
D :	Aluminum	-		-	USD / tonne	2020-2050
Price	Lithium	-		-	USD / tonne	2020-2050
	Cobalt	-	•	-	USD / tonne	2020-2050
	Coal	-	-	•	USD / tonne	2020-2050
	Oil	-	-		USD / tCO2	2020-2050

Parameter			Re	gion	1114	Time Hadress
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Coal	Power		•	TWh	2020-2050
	Coal CCS	Power		•	TWh	2020-2050
	Oil	Power	•	•	TWh	2020-2050
	Natural gas	Power		•	TWh	2020-2050
	Natural gas CCS	Power		•	TWh	2020-2050
	Nuclear	Power		•	TWh	2020-2050
Electricity Generation	Hydro	Power		•	TWh	2020-2050
	Biomass	Power		•	TWh	2020-2050
	Biomass CCS	Power	•	•	TWh	2020-2050
	Solar	Power	•	•	TWh	2020-2050
	Onshore Wind	Power	•	•	TWh	2020-2050
	Offshore Wind	Power		•	TWh	2020-2050
	Hydrogen	Power		•	TWh	2020-2050
	Steel	Industry		•	Mt	2020-2050
	Cement	Industry	•	•	Mt	2020-2050
	Hydrogen	Industry	•	•	Mt	2020-2050
	Chemicals	Industry		•	Mt	2020-2050
Duration	Aggregates	Industry	•	•	Mt	2020-2050
Production	Nickel	Industry		-	kt	2020-2050
	Steel	Industry		-	kt	2020-2050
	Aluminum	Industry		-	kt	2020-2050
	Lithium	Industry		-	kt	2020-2050
	Cobalt	Industry		-	kt	2020-2050

Sector energy demand, Primary energy demand, Demand, Population, Price (high), Price (low)

	Parameter		Re	gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan	Unit	
	Oil	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
	Natural Gas	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
Contra Engany Domond	Coal	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
Sector Energy Demand	Biomass	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Electricity	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Hydrogen	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Oil	Total	•	•	PJ	2020-2050
Primary Energy Demand	Natural gas	Total	•	•	PJ	2020-2050
Filmary Energy Demand	Coal	Total	•	•	PJ	2020-2050
	Biomass	Total	•	•	PJ	2020-2050
Demand	Aviation	Transport	•	•	RTK (billion)	2020-2050
Population	-	Total	•	•	Million Population	2020-2050
Price (High)	Oil	-	•	-	USD / Barrel	2020-2050
Price (Low)	Oil	-	•	-	USD / Barrel	2020-2050

Nature-based solutions, Bioenergy, Timber, Agriculture, Alternative meat

	Parameter		Region		Unit	Time Horizon
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Area	Land Use	•	•	Million ha	2020-2050
Noture based Solutions	Carbon Value	Land Use	•	•	USD 2020	2020-2050
Nature-based Solutions	CAPEX	Land Use	•	•	USD 2020 , USD 2020/ha , Index (2020 = 1)	2020-2050
	OPEX	Land Use	•	•	USD 2020/ha/yr (average over project lifetime)	2020
Picoporqu	Production	Land Use	•	-	EJ/yr	2020-2050
Bioenergy	Price Index	Land Use	•	-	Index (2025 = 100)	2020-2050
Timber	Industrial roundwood	Land Use	•	-	Million M3, Index (2020 = 100)	2020-2050
	Production	Land Use	•	-	Mt DM/yr	2020-2050
Agriculture	Crop Yields	Land Use	•	-	t DM/ha	2020-2050
	Average annual food price change 2020-2050	Land Use	•	-	Percent	2020
Alternative Meat	Production	Land Use		-	Mt DM	2020-2050
	Production Cost	Land Use	•	-	Index(Animal meat average 2020年=100)	2020-2050

GHG emissions, CO2 removal, New deployment, Capex, Capacity, Technology stock, Price

	Parameter		Re	gion	Unit	T :
Category	Variable	Industry	World	Japan	Unit	Time Horizon
GHG emissions	CO2 emissions	Power, Buildings, Industry, Transport, Other energy, Total	•	•	Mt	2020-2050
	BECCS	Power, Industry	•		Mt	2020-2050
CO2 Removal	DACS	Total	•	-	Mt	2020-2050
	Electricity Generation	Power, Hydrogen	•		GW	2020-2050
New Dealermont	Vehicles	Transport	•		Vehicles (thousands)	2020-2050
New Deployment	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery capacity	Total	•	•	GWh	2020-2050
	Electricity Generation	Power, Hydrogen	•		USD (million)	2020-2050
Capex	Vehicles	Transport	•		USD (million)	2020-2050
	Heating systems	Buildings	•	•	USD (million)	2020-2050
Capacity	Electricity Generation	Power	•		GW	2020-2050
	Electricity Generation	Hydrogen	•		GW	2020-2050
Technology Stock	Vehicles	Transport	•		Vehicles (thousands)	2020-2050
	Heating systems	Buildings	•		% mix	2020-2050
	Battery	-	•	-	USD / kWh	2020-2050
	Nickel	-	•	-	USD / tonne	2020-2050
	Copper	-	•	-	USD / tonne	2020-2050
Duin	Aluminum	-	•	-	USD / tonne	2020-2050
Price	Lithium	-	•	-	USD / tonne	2020-2050
	Cobalt	-	•	-	USD / tonne	2020-2050
	Coal	-	-	•	USD / tonne	2020-2050
	Carbon	-	-		USD / tCO2	2020-2050

	Parameter		Reg	gion	Unit	T ime - 11 - 11 - 1
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Coal	Power	•	•	TWh	2020-2050
	Coal CCS	Power	•	•	TWh	2020-2050
	Oil	Power	•		TWh	2020-2050
	Natural gas	Power	•		TWh	2020-2050
	Natural gas CCS	Power	•		TWh	2020-2050
	Nuclear	Power	•		TWh	2020-2050
Electricity Generation	Hydrogen	Power	•		TWh	2020-2050
	Biomass	Power	•		TWh	2020-2050
	Biomass CCS	Power	•		TWh	2020-2050
	Solar	Power	•	•	TWh	2020-2050
	Onshore wind	Power	•		TWh	2020-2050
	Offshore wind	Power	•		TWh	2020-2050
	Hydrogen	Power	•		TWh	2020-2050
	Steel	Industry	•	•	Mt	2020-2050
	Cement	Industry	•	•	Mt	2020-2050
	Hydrogen	Industry	•	•	Mt	2020-2050
	Chemicals	Industry	•	•	Mt	2020-2050
Production	Aggregates	Industry	•	•	Mt	2020-2050
Production	Nickel	Industry	•	-	kt	2020-2050
	Copper	Industry	•	-	kt	2020-2050
	Aluminum	Industry		-	kt	2020-2050
	Lithium	Industry		-	kt	2020-2050
	Cobalt	Industry		-	kt	2020-2050

Sector energy demand, Primary energy demand, Demand, Population, Price (high), Price (low)

	Parameter		Reç	gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan	Onit	
	Oil	Power, Buildings, Transport, Industry, Non-energy use, Other energy	•	•	PJ	2020-2050
	Natural gas	Power, Buildings, Transport, Industry, Non-energy use, Other energy	•	•	PJ	2020-2050
Sector energy demand	Coal	Power, Buildings, Industry, Non- energy use, Other energy	•	•	PJ	2020-2050
Sector energy demand	Biomass	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Electricity	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Hydrogen	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Oil	Total	•	•	PJ	2020-2050
Primary energy demand	Natural gas	Total	•	•	PJ	2020-2050
n ninary energy demand	Coal	Total	•	•	PJ	2020-2050
	Biomass	Total	•	•	PJ	2020-2050
Demand	Aviation	Transport	•	•	RTK(billion)	2020-2050
Population	-	Total	•	•	Million	2020-2050
Price (high)	Oil	-	•	-	USD / Barrel	2020-2050
Price (low)	Oil	-	•	-	USD / Barrel	2020-2050

	Parameter		Parameter Region			gion	11-14	Time Heringer
Category	Variable	Industry	World	Japan	Unit	Time Horizon		
	Cropland-improve	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
	Forest-avoid	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
	Forest-plant	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
Opex	Forest-restore	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
	Mangrove-restore	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
	Pasture-improve	Land use		-	USD 2021/ha/yr (average over project lifetime)	2020		
	Peat-restore	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020		
	Cropland-improve	Land use	•	-	USD 2021/ha	2020-2050		
	Forest-avoid	Land use	•	-	USD 2021/ha	2020-2050		
	Forest-plant	Land use	•	-	USD 2021/ha	2020-2050		
Capex	Forest-restore	Land use	•	-	USD 2021/ha	2020-2050		
	Mangrove-restore	Land use	•	-	USD 2021/ha	2020-2050		
	Pasture-improve	Land use	•	-	USD 2021/ha	2020-2050		
	Peat-restore	Land use	•	-	USD 2021/ha	2020-2050		
	Cropland-improve	Land use	•	-	USD 2021	2020-2050		
	Forest-avoid	Land use	•	-	USD 2021	2020-2050		
	Forest-restore-plant	Land use	•	-	USD 2021	2020-2050		
Annual Revenue	Mangrove-restore	Land use	•	-	USD 2021	2020-2050		
	Pasture-improve	Land use	•	-	USD 2021	2020-2050		
	Peat-restore	Land use	•	-	USD 2021	2020-2050		
	All NBS	Land use		-	USD 2021	2020-2050		

	Parameter			gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Cropland-improve	Land Use	•	-	USD 2021	2020-2050
	Forest-avoid	Land Use	•	-	USD 2021	2020-2050
	Forest-restore-plant	Land Use	•	-	USD 2021	2020-2050
Cumulative Investment	Mangrove-restore	Land Use	•	-	USD 2021	2020-2050
	Pasture-improve	Land Use	•	-	USD 2021	2020-2050
	Peat-restore	Land Use	•	-	USD 2021	2020-2050
	All NBS	Land Use	•	-	USD 2021	2020-2050
	Cropland-improve	Land Use	•	-	Mha	2020-2050
	Forest-avoid	Land Use	•	-	Mha	2020-2050
	Forest-restore-plant	Land Use	•	-	Mha	2020-2050
Cumulative area	Mangrove-restore	Land Use	•	-	Mha	2020-2050
	Pasture-improve	Land Use	•	-	Mha	2020-2050
	Peat-restore	Land Use	•	-	Mha	2020-2050
	All NBS	Land Use	•	-	Mha	2020-2050

	Parameter	rs	Reg	gion	11.54	Time II a dia an
Category	Variable	Industry	World	Japan	Unit	Time Horizon
CO2	-	Land Use		-	Mt CO2/yr	2020-2050
Land price index	-	Land Use		-	Index (2020 = 100)	2020-2050
	Cropland-improve	Land Use		-	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-avoid	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-plant	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
Opex	Forest-restore	Land Use		-	USD 2021/ha/yr (average over project lifetime)	2020
	Mangrove-restore	Land Use		-	USD 2021/ha/yr (average over project lifetime)	2020
	Pasture-improve	Land Use		-	USD 2021/ha/yr (average over project lifetime)	2020
	Peat-restore	Land Use		-	USD 2021/ha/yr (average over project lifetime)	2020
	Coffee	Land Use		-	Index(2020 = 100)	2020-2050
	Сосоа	Land Use		-	Index(2020 = 100)	2020-2050
	Rubber	Land Use		-	Index(2020 = 100)	2020-2050
	Sugar cane	Land Use		-	Index(2020 = 100)	2020-2050
	Maize	Land Use		-	Index(2020 = 100)	2020-2050
	Oil palm fruit	Land Use		-	Index(2020 = 100)	2020-2050
	Temperate cereals	Land Use		-	Index(2020 = 100)	2020-2050
Price	Poultry meat	Land Use		-	Index(Animal meat average 2020 = 100)	2020-2050
	Industrial roundwood	Land Use		-	Index(2020 = 100)	2020-2050
	Soybean	Land Use		-	Index(2020 = 100)	2020-2050
	Monogastric meat	Land Use		-	Index(Animal meat average 2020 = 100)	2020-2050
	Ruminant meat	Land Use		-	Index(Animal meat average 2020 = 100)	2020-2050
	Animal meat average	Land Use		-	Index(Animal meat average 2020 = 100)	2020-2050
	Dairy	Land Use		-	Index (Dairy average 2020 = 100) , Index (2020 = 100)	2020-2050
	Rice	Land Use		-	Index(2020 = 100)	2020-2050

	Parameter		Reg	gion	11.4	
Category	Variable	Industry	World	Japan	Unit	Time Horizon
Price index	Second-generation	Land Use		-	Index(2020 = 100)	2020-2050
Food price index	-	Land Use		-	Index(2020 = 100)	2020-2050
	Coffee	Land Use		-	Mt DM/yr	2020-2050
	Сосоа	Land Use		-	Mt DM/yr	2020-2050
	Rubber	Land Use		-	Mt DM/yr	2020-2050
	Sugar cane	Land Use		-	Mt DM/yr	2020-2050
	Maize	Land Use		-	Mt DM/yr	2020-2050
	Oil palm fruit	Land Use		-	Mt DM/yr	2020-2050
	Temperate cereals	Land Use		-	Mt DM/yr	2020-2050
Production	Poultry meat	Land Use		-	Mt DM/yr	2020-2050
	Industrial roundwood	Land Use		-	Mm3/yr	2020-2050
	Soybean	Land Use		-	Mt DM/yr	2020-2050
	Second-generation	Land Use		-	EJ/yr	2020-2050
	Monogastric meat	Land Use		-	Mt DM/yr	2020-2050
	Ruminant meat	Land Use		-	Mt DM/yr	2020-2050
	Dairy	Land Use		-	Mt DM/yr	2020-2050
	Rice	Land Use		-	Mt DM/yr	2020-2050
	Cropland-improve	Land Use		-	USD 2021/ha	2020-2050
	Forest-avoid	Land Use		-	USD 2021/ha	2020-2050
	Forest-plant	Land Use		-	USD 2021/ha	2020-2050
Сарех	Forest-restore	Land Use		-	USD 2021/ha	2020-2050
	Mangrove-restore	Land Use		-	USD 2021/ha	2020-2050
	Pasture-improve	Land Use		-	USD 2021/ha	2020-2050
	Peat-restore	Land Use		-	USD 2021/ha	2020-2050

Annual revenue, Average crop yields, Cumulative investment, Cumulative area

	Parameter		Reg	gion		
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Cropland-improve	Land Use	•	-	USD21	2020-2050
	Forest-avoid	Land Use	•	-	USD21	2020-2050
	Forest-restore-plant	Land Use	•	-	USD21	2020-2050
Annual revenue	Mangrove-restore	Land Use	•	-	USD21	2020-2050
	Pasture-improve	Land Use	•	-	USD21	2020-2050
	Peat-restore	Land Use	•	-	USD21	2020-2050
	All NBS	Land Use	•	-	USD21	2020-2050
Average crop yields	-	Land Use	•	-	t DM/ha	2020-2050
	Cropland-improve	Land Use	•	-	USD21	2020-2050
	Forest-avoid	Land Use	•	-	USD21	2020-2050
	Forest-restore-plant	Land Use	•	-	USD21	2020-2050
Cumulative Investment	Mangrove-restore	Land Use	•	-	USD21	2020-2050
	Pasture-improve	Land Use	•	-	USD21	2020-2050
	Peat-restore	Land Use	•	-	USD21	2020-2050
	All NBS	Land Use	•	-	USD21	2020-2050
	Cropland-improve	Land Use	•	-	Mha	2020-2050
	Forest-avoid	Land Use	•	-	Mha	2020-2050
	Forest-restore-plant	Land Use	•	-	Mha	2020-2050
Cumulative Area	Mangrove-restore	Land Use	•	-	Mha	2020-2050
	Pasture-improve	Land Use		-	Mha	2020-2050
	Peat-restore	Land Use		-	Mha	2020-2050
	All NBS	Land Use	•	-	Mha	2020-2050

IPR Supply Chain Analysis 2022

Issuing Agency	Inevitable Policy Response	
Scenario	IPR FPS/IPR RPS/BAU %R6/R7: IPR FPS only	
Time Horizon	2020–2050, every 5 years	
	 R1 : Commodity production R2 : Commodity global prices R6 : Upgrading Operation costs 	
	 R7 : Commodity price premia 	
	1. Modeled after several policy scenarios and explores the long-term trends in global and regional	-
	 R1 productions 2. To assess the likelihood of downstream companies facing chronic demand shift 	(
ltem/ Use case	 R2 1. A chronological study of price trends in various policy scenarios 2. To analyze the impact of global price change on downstream company's business models 	
	 R6 1. To assess the total cost of operational improvements that downstream firms must bear to reduce deforestation 	
	 R7 1. To evaluate the sum of the prices that downstream firms must pay to procure goods that internalize the cost of deforestation using the Price Premier Value Driver 	

R1/R6 : List of available parameters					
Category	Region				
Soybean	 SEA : Southeast Asia ANZ : Australia and NZ 				
Beef	 CHA : China, Korean Democratic People's Republic, Taiwan, HK, and Macau EUR : West Europe 				
Palm oil	NEU : North EuropeIND : India				
Timber	 DEA : Japan and Korea MEA : Middle East Asia CAN : Canada, Saint Pierre and Miguelon 				
Сосоа	 TLA : Tropical Latin America USA : USA 				
Coffee	 REF : East Europe RUS : Russia SAS : South Asia 				
Rubber	 SCO : Latin America`s Southern Cone BRA : Brazil TAF : Tropical Africa SAF : Southern Africa 				

P1/P6 + List of available parameters

R2/R7 : List of available parameters

Category	Region
Same as above	• Global

SSP was developed as a socio-economic scenario based on recent policies and socio-economic environment

- Based on the issues of the socio-economic scenario "SRES" related to the evaluation of existing climate change, National Institute for Environmental Studies(Japan), PNNL(US), PBL(Netherland), IIASA(Austria) and Germany(PIK) has developed SSP^{*1}
 - > SPES has problems such as the old base year (1990) and the inability to reflect recent policies
 - SSP considers recent changes in the external environment such as recent policies, vital statistics, GDP, and urbanization ^{*2}, and has relevance to existing socio-economic scenarios such as "SERS" and "RCPs". Developed as a scenario. It consists of 5 scenarios

		-
SSP	Scenario	Scenario Outline *3
SSP1	Sustainability	A scenario that assumes the realization of both international mitigation measures and adaptation measures related to climate change
SSP2	Middle of the Road	A scenario that assumes that the current socio-economic growth will continue
SSP3	Regional Rivalry	A scenario that assumes a situation where the country is divided, and it is difficult to realize international mitigation measures and adaptation measures
SSP4	Inequality	A scenario that assumes an international economic society with widening disparities
SSP5	Fossil-fueled Development	A scenario that assumes that the international community will develop depending on fossil fuels

5 Scenario Composition of SSP

*1: <u>https://www.nies.go.jp/whatsnew/20170221/20170221.html</u> ***2**: <u>https://unfccc.int/sites/default/files/part1_iiasa_rogelj_ssp_poster.pdf</u> *3: <u>https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change</u>

IAM Scenarios Model : GDP, Population, Primary Energy, Secondary Energy (Electricity)

Category						SSP				
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark	
GDP	PPP	—	billionUS\$2005/yr	0	0	0	0	0		
Population	Population	—	million	0	0	0	0	0		
Energy	Primary Energy	Total	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Biomass(Total / Traditional / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data(Traditional, CCS)is not available in SSP3	
Energy	Primary Energy	Coal (Total / with CCS /without CCS)	EJ/yr	0	0	\triangle	0	0	Some data (CCS) is not available in SSP3	
Energy	Primary Energy	Oil (Total / with CCS / wihout CCS)	EJ/yr	0			0	Δ	Some data (CCS) is not available in SSP2,3,5	
Energy	Primary Energy	Gas (Total / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3	
Energy	Primary Energy	Fossil (Total , with CCS, wihout CCS)	EJ/yr	0	0		0	0	Some data(CCS)is not available in SSP3	
Energy	Primary Energy	Nuclear	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Non-Biomass Renewables	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Hydro	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Geothermal	EJ/yr	-	0	0	0	0	Data is not available in SSP1	
Energy	Primary Energy	Other	EJ/yr	0	0	0	-	-	Data is not available in SSP4,5	
Energy	Primary Energy	Solar	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Wind	EJ/yr	0	0	0	0	0		
Energy	Primary Energy	Secondary Energy Trade	EJ/yr	-	-	0	-	-	Data is not available in SSP1,2,4,5	
Energy	Secondary Energy (Electricity)	Total	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)	Biomass(Total / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3	
Energy	Secondary Energy (Electricity)	Coal (Total / with CCS /without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3	
Energy	Secondary Energy (Electricity)	Oil	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)	Gas (Total / with CCS/ without CCS)	EJ/yr	0	0	\bigtriangleup	0	0	Some data (CCS) is not available in SSP3	
Energy	Secondary Energy (Electricity)	Geothermal	EJ/yr	\triangle	0	0	0	0	Data is not available in SSP1	
Energy	Secondary Energy (Electricity)	Hydro	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)	Non-Biomass Renewables	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)	Nuclear	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)	Solar	EJ/yr	0	0	0	0	0		
Energy	Secondary Energy (Electricity)		EJ/yr	0	0	0	0	0		

Source : SSP, SSP Public Database Version 2.0 (As of February 2024)

%Extract parameters for which Global values can be obtained %2005, 2010~2100, data is available for each 10 years

IAM Scenarios Model : Secondary Energy, Final Energy

	Category		11.14			SSP			
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Energy	Secondary Energy (Gases)	Total	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Gases)	Biomass	EJ/yr	-	0	-	0	0	Data is not available in SSP1,3
Energy	Secondary Energy (Gases)	Coal	EJ/yr	-	0	-	0	0	Data is not available in SSP1,3
Energy	Secondary Energy (Gases)	Natural Gas	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Heat)	Total	EJ/yr	-	0	0	-	0	Data is not available in SSP1,4
Energy	Secondary Energy (Heat)	Geothermal	EJ/yr	-	0	0	-	0	Data is not available in SSP1,4
Energy	Secondary Energy (Hydrogen)	Total	EJ/yr	0	0	-	0	0	Data is not available in SSP3
Energy	Secondary Energy (Hydrogen)	Biomass(Total / with CCS/ without CCS)	EJ/yr	0	0	-	0	0	Data is not available in SSP3
Energy	Secondary Energy (Hydrogen)	Electricity	EJ/yr	0	0	-	0	0	Data is not available in SSP3
Energy	Secondary Energy (Liquids)	Total	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Liquids)	Biomass(Total / with CCS/ without CCS)	EJ/yr		0	Δ	0	0	Some data (CCS) is not available in SSP1, (CCU · without CCU) is not available in SSP1
Energy	Secondary Energy (Liquids)	Coal (Total / with CCS /without CCS)	EJ/yr	-	0	-	-	0	Data is not available in SSP1,3,4
Energy	Secondary Energy (Liquids)	Gas (Total / with CCS/ without CCS)	EJ/yr	-	0	-	-	-	Data is not available in SSP1,3,4,5
Energy	Secondary Energy (Liquids)	Oil	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Solids)	—	EJ/yr	0	0	-	-	0	Data is not available in SSP3,4
Energy	Final Energy	Total	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Electricity	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Gases	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Heat	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Hydrogen	EJ/yr	0	0	-	0	0	Data is not available in SSP3
Energy	Final Energy	Liquids	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Solar	EJ/yr	0	0	-	-	-	Data is not available in SSP3,4,5
Energy	Final Energy (Solids)	Total	EJ/yr	0	0	0	0	0	
Energy	Final Energy (Solids)	Biomass (Total, Traditional)	EJ/yr	0	0	\triangle	0	0	Some data (Traditional) is not available in SSP3
Energy	Final Energy (Solids)	Coal	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Industry	EJ/yr	0	0	0	0	-	Data is not available in SSP5
Energy	Final Energy	Residential and Commercial	EJ/yr	0	0	0	0	-	Data is not available in SSP5
Energy	Final Energy	Transportation	EJ/yr	0	0	0	0	0	

℅Extract parameters for which Global values can be obtained ℅2005, 2010~2100, data is available for each 10 years

IAM Scenarios Model : Energy Service (Transportation), Land Cover, Emissions (unharmonized)

	11			SSP					
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Energy	Energy Service (Transportation)	Freight	bn tkm/yr	0	-	-	0	0	Data is not available in SSP2,3
Energy	Energy Service (Transportation)	Passenger	bn pkm/yr	0	-	-	0	0	Data is not available in SSP2,3
Land Cover	Built-up Area	—	million ha	0	-	0	0	0	Data is not available in SSP2
Land Cover	Cropland	—	million ha	0	0	0	0	0	
Land Cover	Forest	-	million ha	0	0	0	0	0	
Land Cover	Pasture	-	million ha	0	0	0	0	0	
Emissions (unharmonized)	BC	-	Mt BC/yr	0	0	0	0	0	
Emissions (unharmonized)	CH4	Total	Mt CH4/yr	0	0	0	0	0	
Emissions (unharmonized)	CH4	Fossil Fuels and Industry	Mt CH4/yr	-	-	-	0	0	Data is not available in SSP1,2,3
Emissions (unharmonized)	CH4	Land Use	Mt CH4/yr	0	0	0	0	0	
Emissions (unharmonized)	СО	-	Mt CO/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2	Total	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2 (Carbon Capture and Storage)	Total	Mt CO2/yr	0	0	-	0	0	Data is not available in SSP3
Emissions (unharmonized)	CO2 (Carbon Capture and Storage)	Biomass	Mt CO2/yr	0	0	-	0	0	Data is not available in SSP3
Emissions (unharmonized)	CO2	Fossil Fuels and Industry	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2	Land Use	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	F-Gases	-	Mt CO2-equiv/yr	0	0	0	0	0	
Emissions (unharmonized)	Kyoto Gases	-	Mt CO2-equiv/yr	0	0	0	0	0	
Emissions (unharmonized)	N2O	Total	kt N2O / yr	0	0	0	0	0	
Emissions (unharmonized)	N2O	Land Use	kt N2O / yr	0	0	0	0	0	
Emissions (unharmonized)	NH3	-	Mt NH3/yr	0	0	0	0	0	
Emissions (unharmonized)	NOx	-	Mt NO2/yr	0	0	0	0	0	
Emissions (unharmonized)	OC	_	Mt OC/yr	0	0	0	0	0	
Emissions (unharmonized)	Sulfur	-	Mt SO2/yr	0	0	0	0	0	
Emissions (unharmonized)	VOC	_	Mt VOC/yr	0	0	0	0	0	

Source : SSP, SSP Public Database Version2.0 (As of February 2024)

*Extract parameters for which Global values can be obtained *2005, 2010~2100, data is available for each 10 years

IAM Scenarios Model : Emissions (harmonized), Climate

	Category		11			SSP			
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Emissions (harmonized)	BC	_	Mt BC/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Total	Mt CH4/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Fossil Fuels and Industry	Mt CH4/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Land Use	Mt CH4/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	СО	—	Mt CO/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Total	Mt CO2/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Fossil Fuels and Industry	Mt CO2/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Land Use	Mt CO2/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	F-Gases	—	Mt CO2-equiv/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	Kyoto Gases	_	Mt CO2-equiv/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	N2O	_	kt N2O/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	NH3	—	Mt NH3/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	NOx	_	Mt NO2/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	OC	_	Mt OC/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	Sulfur	_	Mt SO2/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Emissions (harmonized)	VOC	—	Mt VOC/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Climate	Concentration	CO2	ppm	0	0	0	0	0	
Climate	Concentration	CH4	ppb	0	0	0	0	0	
Climate	Concentration	N2O	ppb	0	0	0	0	0	
Climate	Forcing	Total	W/m2	0	0	0	0	0	
Climate	Forcing	CO2	W/m2	0	0	0	0	0	
Climate	Forcing	CH4	W/m2	0	0	0	0	0	
Climate	Forcing	N2O	W/m2	0	0	0	0	0	
Climate	Forcing	Kyoto Gases	W/m2	0	0	0	0	0	
Climate	Forcing	F-Gases	W/m2	0	0	0	0	0	
Climate	Forcing	Aerosol	W/m2	0	0	0	0	0	
Climate	Temperature	Global Mean	°C	0	0	0	0	0	

Source : SSP, SSP Public Database Version2.0 (As of February 2024)

Extract parameters for which Global values can be obtained 2005, 2010~2100, data is available for each 10 years

IAM Scenarios Model : Agricultural Indicators, Economic Indicators, Technological Indicators

	Category		11	SSP					Domoule
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Agricultural Indicators	Demand	Crops	million t DM/yr	0	0	0	-	-	Data is not available in SSP4,5
Agricultural Indicators	Demand	Crops (Energy)	million t DM/yr	-	-	0	-	0	Data is not available in SSP1,2,4
Agricultural Indicators	Demand	Livestock	million t DM/yr	0	0	0	-	0	Data is not available in SSP4
Agricultural Indicators	Production	Crops (Energy)	million t DM/yr	0	0	0	0	0	
Agricultural Indicators	Production	Crops (Non-Energy)	million t DM/yr	0	0	0	0	0	
Agricultural Indicators	Production	Livestock	million t DM/yr	0	0	0	0	0	
Economic Indicators	Consumption	_	billion US\$2005/yr	0	0	0	-	0	Data is not available in SSP4
Economic Indicators	Price (Carbon)	_	US\$2005/t CO2	0	0	-	0	0	Data is not available in SSP3
Technological Indicators	Capacity (Electricity)	Total	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Biomass	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Coal	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Gas	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Geothermal	GW	-	0	0	0	0	Data is not available in SSP1
Technological Indicators	Capacity (Electricity)	Hydro	GW	0	0	0	-	0	Data is not available in SSP4
Technological Indicators	Capacity (Electricity)	Nuclear	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Oil	GW	0	0	0	0	-	Data is not available in SSP5
Technological Indicators	Capacity (Electricity)	Other	GW	0	-	-	-	-	Data is not available in SSP2,3,4,5
Technological Indicators	Capacity (Electricity)	Solar (Total, CSP, PV)	GW	0	0			0	Data is not available in SSP3 (CSP), and SSP4 (CSP, PV)
Technological Indicators	Capacity (Electricity)	Wind (Total, Offshore, Onshore)	GW	0	0				Data is not available in SSP3 (Onshore) , and SSP4,5 (Onshore, Offshore)

Source : SSP, SSP Public Database Version 2.0 (As of February 2024)

*Extract parameters for which Global values can be obtained *2005, 2010~2100, data is available for each 10 years

Cat	egory	Unit			SSP			Demente
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
BC	Agricultural Waste Burning	Mt BC/yr	0	0	0	0	0	
BC	Aircraft	Mt BC/yr	0	0	0	0	0	
BC	Energy Sector	Mt BC/yr	0	0	0	0	0	
BC	Forest Burning	Mt BC/yr	0	0	0	0	0	
BC	Grassland Burning	Mt BC/yr	0	0	0	0	0	
BC	Industrial Sector	Mt BC/yr	0	0	0	0	0	
BC	International Shipping	Mt BC/yr	0	0	0	0	0	
BC	Peat Burning	Mt BC/yr	0	0	0	0	0	
BC	Residential Commercial Other	Mt BC/yr	0	0	0	0	0	
BC	Transportation Sector	Mt BC/yr	0	0	0	0	0	
BC	Total	Mt BC/yr	0	0	0	0	0	
BC	Waste	Mt BC/yr	0	0	0	0	0	
C2F6	—	kt C2F6/yr	0	0	0	0	0	
CF4	—	kt CF4/yr	0	0	0	0	0	
CH4	Agricultural Waste Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Agriculture	Mt CH4/yr	0	0	0	0	0	
CH4	Energy Sector	Mt CH4/yr	0	0	0	0	0	
CH4	Forest Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Grassland Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Industrial Sector	Mt CH4/yr	0	0	0	0	0	
CH4	International Shipping	Mt CH4/yr	0	0	0	0	0	
CH4	Peat Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Residential Commercial Other	Mt CH4/yr	0	0	0	0	0	
CH4	Transportation Sector	Mt CH4/yr	0	0	0	0	0	
CH4	Total	Mt CH4/yr	0	0	0	0	0	
CH4	Waste	Mt CH4/yr	0	0	0	0	0	

Source : SSP, SSP Public Database Version2.0 (As of February 2024)

%Extract parameters for which Global values can be obtained 2005, 2010, 2100, data is available for each 10 years

Categoryhgac		Unit			SSP		Remark	
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
CO2	AFOLU	Mt CO2/yr	0	0	0	0	0	
CO2	Aircraft	Mt CO2/yr	0	0	0	0	0	
CO2	Energy Sector	Mt CO2/yr	0	0	0	0	0	
CO2	Industrial Sector	Mt CO2/yr	0	0	0	0	0	
CO2	International Shipping	Mt CO2/yr	0	0	0	0	0	
CO2	Residential Commercial Other	Mt CO2/yr	0	0	0	0	0	
CO2	Solvents Production and Application	Mt CO2/yr	0	0	0	0	0	
CO2	Transportation Sector	Mt CO2/yr	0	0	0	0	0	
CO2	Total	Mt CO2/yr	0	0	0	0	0	
CO2	Waste	Mt CO2/yr	0	0	0	0	0	
СО	Agricultural Waste Burning	Mt CO/yr	0	0	0	0	0	
СО	Aircraft	Mt CO/yr	0	0	0	0	0	
СО	Energy Sector	Mt CO/yr	0	0	0	0	0	
СО	Forest Burning	Mt CO/yr	0	0	0	0	0	
СО	Grassland Burning	Mt CO/yr	0	0	0	0	0	
СО	Industrial Sector	Mt CO/yr	0	0	0	0	0	
СО	International Shipping	Mt CO/yr	0	0	0	0	0	
СО	Peat Burning	Mt CO/yr	0	0	0	0	0	
СО	Residential Commercial Other	Mt CO/yr	0	0	0	0	0	
СО	Transportation Sector	Mt CO/yr	0	0	0	0	0	
СО	Total	Mt CO/yr	0	0	0	0	0	
СО	Waste	Mt CO/yr	0	0	0	0	0	
HFC	-	Mt CO2-equiv/yr	0	0	0	0	0	
N2O	—	kt N2O/yr	0	0	0	0	0	

Extract parameters for which Global values can be obtained 2005, 2010~2100, data is available for each 10 years

Cate	egory	11			SSP			Demont
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
NH3	Agricultural Waste Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Agriculture	Mt NH3/yr	0	0	0	0	0	
NH3	Aircraft	Mt NH3/yr	0	0	0	0	0	
NH3	Energy Sector	Mt NH3/yr	0	0	0	0	0	
NH3	Forest Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Grassland Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Industrial Sector	Mt NH3/yr	0	0	0	0	0	
NH3	International Shipping	Mt NH3/yr	0	0	0	0	0	
NH3	Peat Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Residential Commercial Other	Mt NH3/yr	0	0	0	0	0	
NH3	Transportation Sector	Mt NH3/yr	0	0	0	0	0	
NH3	Total	Mt NH3/yr	0	0	0	0	0	
NH3	Waste	Mt NH3/yr	0	0	0	0	0	
Nox	Agricultural Waste Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Agriculture	Mt NOx/yr	0	0	0	0	0	
Nox	Aircraft	Mt NOx/yr	0	0	0	0	0	
Nox	Energy Sector	Mt NOx/yr	0	0	0	0	0	
Nox	Forest Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Grassland Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Industrial Sector	Mt NOx/yr	0	0	0	0	0	
Nox	International Shipping	Mt NOx/yr	0	0	0	0	0	
Nox	Peat Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Residential Commercial Other	Mt NOx/yr	0	0	0	0	0	
Nox	Solvents Production and Application	Mt NOx/yr	0	0	0	0	0	
Nox	Transportation Sector	Mt NOx/yr	0	0	0	0	0	
Nox	Total	Mt NOx/yr	0	0	0	0	0	
Nox	Waste	Mt NOx/yr	0	0	0	0	0	nich Global values can be obtained

Source : SSP, SSP Public Database Version2.0 (As of February 2024)

Extract parameters for which Global values can be obtained
 2005, 2010~2100, data is available for each 10 years

Appendix 1-184

Cate	egory	Unit			SSP			Domorik
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
OC	Agricultural Waste Burning	Mt OC/yr	0	0	0	0	0	
OC	Aircraft	Mt OC/yr	0	0	0	0	0	
OC	Energy Sector	Mt OC/yr	0	0	0	0	0	
OC	Forest Burning	Mt OC/yr	0	0	0	0	0	
OC	Grassland Burning	Mt OC/yr	0	0	0	0	0	
OC	Industrial Sector	Mt OC/yr	0	0	0	0	0	
OC	International Shipping	Mt OC/yr	0	0	0	0	0	
OC	Peat Burning	Mt OC/yr	0	0	0	0	0	
OC	Residential Commercial Other	Mt OC/yr	0	0	0	0	0	
OC	Transportation Sector	Mt OC/yr	0	0	0	0	0	
OC	Total	Mt OC/yr	0	0	0	0	0	
OC	Waste	Mt OC/yr	0	0	0	0	0	
SF6	-	kt SF6/yr	0	0	0	0	0	
Sulfur	Agricultural Waste Burning	Mt SO2/yr	0	0	0	0	0	
Sulfur	Aircraft	Mt SO2/yr	0	0	0	0	0	
Sulfur	Energy Sector	Mt SO2/yr	0	0	0	0	0	
Sulfur	Forest Burning	Mt SO2/yr	0	0	0	0	0	
Sulfur	Grassland Burning	Mt SO2/yr	0	0	0	0	0	
Sulfur	Industrial Sector	Mt SO2/yr	0	0	0	0	0	
Sulfur	International Shipping	Mt SO2/yr	0	0	0	0	0	
Sulfur	Peat Burning	Mt SO2/yr	0	0	0	0	0	
Sulfur	Residential Commercial Other	Mt SO2/yr	0	0	0	0	0	
Sulfur	Transportation Sector	Mt SO2/yr	0	0	0	0	0	
Sulfur	Total	Mt SO2/yr	0	0	0	0	0	
Sulfur	Waste	Mt SO2/yr	0	0	0	0	0	

Source : SSP, SSP Public Database Version2.0 (As of February 2024)

Extract parameters for which Global values can be obtained 2005, 2010~2100, data is available for each 10 years

Category		Unit			SSP		Remark	
Large	Medium	Onit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
VOC	Agricultural Waste Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Aircraft	Mt VOC/yr	0	0	0	0	0	
VOC	Energy Sector	Mt VOC/yr	0	0	0	0	0	
VOC	Forest Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Grassland Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Industrial Sector	Mt VOC/yr	0	0	0	0	0	
VOC	International Shipping	Mt VOC/yr	0	0	0	0	0	
VOC	Peat Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Residential Commercial Other	Mt VOC/yr	0	0	0	0	0	
VOC	Solvents Production and Application	Mt VOC/yr	0	0	0	0	0	
VOC	Transportation Sector	Mt VOC/yr	0	0	0	0	0	
VOC	Total	Mt VOC/yr	0	0	0	0	0	
VOC	Waste	Mt VOC/yr	0	0	0	0	0	

Table of contents

Main Part

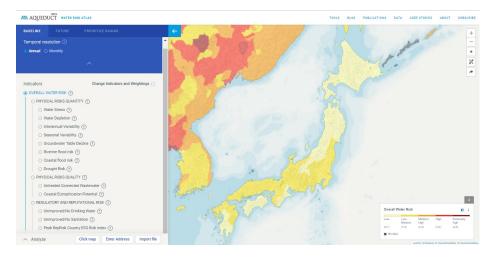
	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature	1-1
1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-5 1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execution	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

3-4-2. Goal setting

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat	tional)
and reference parameters and tools	
1-1. TCFD scenario analysis Disclosure cases (domestic and international	1-1
1-2. TCFD scenario analysis reference parameters/tools 1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in	tornal
carbon pricing)	lemai
	0.4
2-1. Definition of internal carbon pricing2-2. Theoretical version of internal carbon pricing	2-1 2-20
2-2-1. Consideration of price setting	2-20
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an applicable companies	a 2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	
information	2-97 2-111
2-4-2. Examples of advanced ICP implementation in Japan and overseas 2-4-3. List of companies that have introduced ICP in Japan	2-111 2-136
	2-100

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) 04

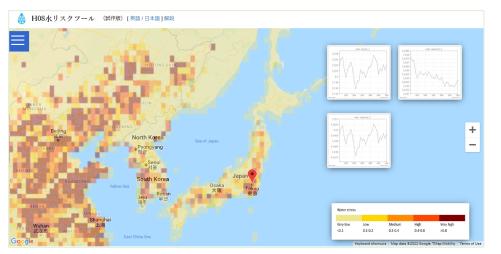

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Physical risk tools used in past projects (excerpt)

#	Issuing Agency	Tool Name	URL	Subject region	Explanation related page
1	World Resources Institute (WRI)	Aqueduct Water Risk Atlas	https://www.wri.org/aqueduct	Global	5-108
2	World Bank	Climate Change Knowledge Portal	https://climateknowledgeportal.w orldbank.org/	Global	5-110
3	AP-PLAT	Climate Impact Viewer	<u>https://a-plat.nies.go.jp/ap- plat/asia_pacific/index.html</u>	Asia	5-111
4	A-PLAT	Web GIS	<u>https://adaptation-</u> <u>platform.nies.go.jp/webgis/index.</u> <u>html</u>	Japan	5-112~5-122
5	European Commission	European Climate Adaptation Platform (Climate-ADAPT)	https://climate- adapt.eea.europa.eu/	EU	- ※European Adaptation Platform
6	IPCC TGICA	IPCC Data Distribution Centre	https://www.ipcc-data.org/	Global	- ※Database of the Intergovernmental Panel on Climate Change (IPCC)
7	FAO	The future of food and agriculture Alternative pathways to 2050	https://www.fao.org/global- perspectives-studies/food- agriculture-projections-to- 2050/en/	Global	-

AQUEDUCT Water Risk Atlas

			List of available parameters					
Issuing Agency	World Resource Institution	Indicators (Current)						
Scenario	Pessimistic / Business as usual / Optimistic	Physical Risks (Quantity)	 Water Stress Water Depletion Interannual Variability Seasonal Variability 					
Time Horizon	Baseline / 2030—2040		 Groundwater Table Decline Riverine flood risk / Coastal flood risk Drought Risk 					


Physical Risks (Quantity)	 Water Depletion Interannual Variability Seasonal Variability Groundwater Table Decline Riverine flood risk / Coastal flood risk Drought Risk 		
Physical Risks (Quality)	Untreated Connected WastewaterCoastal Eutrophication Potential		
Regulatory and Reputational Risk	 Unimproved/No Drinking Water Unimproved/No Sanitation Peak RepRisk Country ESG Risk Index 		
lı	ndicators (2030-2040)		
 Water Stress Seasonal Variability Water Supply Water Demand 			

Source : WRI, AQUEDUCT Water Risk Atlas, https://www.wri.org/applications/aqueduct/water-risk-atlas/#/?advanced=false&basemap=hydro&indicator=w_awr_def_tot_cat&lat=30&Ing=-80&mapMode=view&month=1&opacity=0.5&ponderation=DEF&predefined=false&projection=absolute&scenario=optimistic&scope=baseline&timeScale=annual&year=baseline&zoom=3 (As of February 2024)

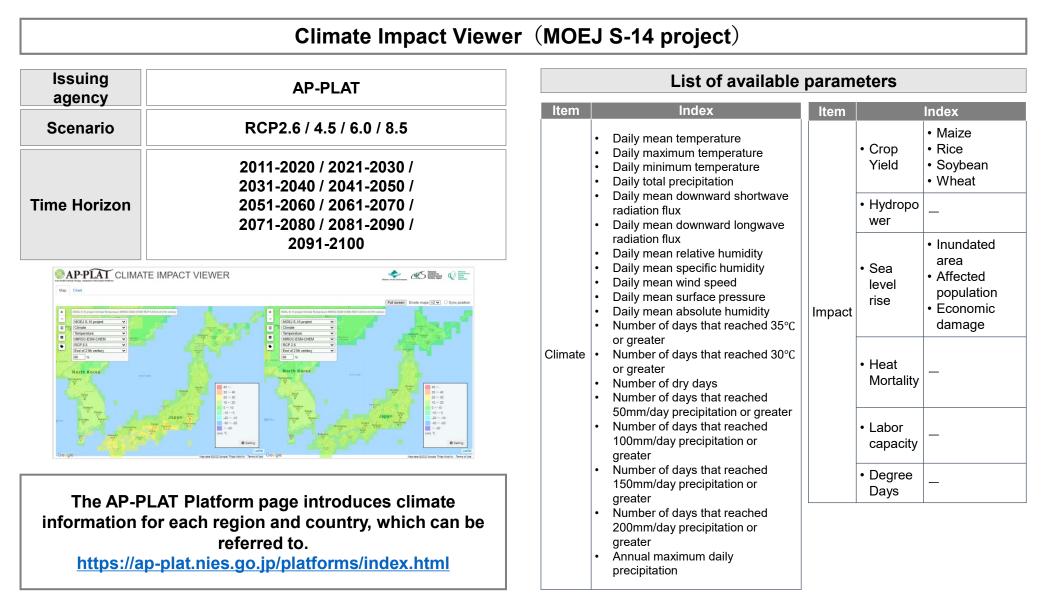
H08 Water Risk Tool (National Institute for Environmental Studies)

H08 Water Risk Tool

Issuing agency	National Institute for Environmental Studies
Scenario	RCP2.6 (2°C increase) / RCP7.0 (3°Cincrease) / RCP8.5 (4°C increase)
Time Horizon	1901—2090 (Selected per year)

Results from the H08 water risk tool can also be compared with results from other tools, such as Aqueduct, to enhance analysis and improve the reliability of information on the tightness of water resources.

List of available parameters					
Indicators (map)					
Climate Model	 GFDL-ESM4 MPI-ESM1-2-HR IPSL-CM6A-LR MRI-ESM2-0 UKESM1-0-LL Ensemble (Average of the above five models) 				
Water stress index	 Water stress Water depletion Interannual variability Seasonal variability Groundwater level decline Possible sustainable water intake 				
Basic variables	 Total water withdrawal Annual river discharge (water resources) Water intake from sustainable water sources 				
	Indicators (Time series)				
Specify the location on map					


- Specify the location from the name of place
- Specify the location from the latitude and longitude

Climate Change Knowledge Portal

lssuing agency	World I	Bank	ltem
Scenario	SSP1-1.9 / S SSP2-4.5 / SSP3-		Essential Climate
Time Horizon	2020—2039 / 2 2060—2079 / 2		
WORLD BANK GROUP Climate Change Knowledge To bestgement Phartitioners and Phartimers and Phart	y Makers TIME PERIOD SCENAR 2020-2039 ✓ 5391-1.9 1039 (Annual) Ξ Projected Climatology of N	COUNTRY WATERHED D CALCULATION In CALCULATION Immediate of Tropical Nights (f-min > 20°C) for 2020-2039 995-2014), SSP1-1.9, Multi-Model Ensemble	Temperature
NIGHTS 0 27 73 10 146 183 2 AVELLAL DECIMANTE MAAPIN MAY Projected Number of Tropical Nights japar. (Ref. Period: 1995-2014). Multi-) 256 252 359 365 	ojected Number of Tropical Nights (1-min > 20°C) Anomaly nr. (He?. Period: 1999-2014). S291-1.9. Multi-Model Entermise	Precipitation
125	160		
52	jan M Ma Na Las Ca		Additional Variables

	List of available parameters
ltem	Variable
Essential Climate Variable	 Mean-Temperature (month · year) Max-Temperature (month · year) Min-Temperature (month · year) Precipitation (month · year)
Temperature	 Days with heat index (>35°C) Maximum of Daily Max-Temperature Number of Frost Days (T-min<0°C) Number of Summer Days (T-max>25°C) Number of Tropical Nights (T-min>20°C、26°C) Number of Hot Days (T-max>35°C、40°C、42°C、45°C) Minimum of Daily Min-Temperature Warm Spell Duration Index
Precipitation	 Average Largest 1-Day Precipitation Average Largest 5-Day Cumulative Precipitation Days with Precipitation>20mm Max Number of Consecutive Dry Days Max Number of Consecutive Wet Days Precipitation Percent Change Average Largest Monthly Cumulative Precipitation Days with Precipitation>50mm Precipitation amount during wettest days
Additional Variables	Relative humidityGrowing Season Length

Source : World Bank, *Climate Change Knowledge Portal*, https://climateknowledgeportal.worldbank.org/country/japan/climate-data-projections (As of February 2024)

Working on a warmer planet

lssuing agency	International Labour Organization (ILO)
Overview	Analyze and forecast the impact on labor productivity according to workload
Time frame	1995 / 2030

lime frame

Key Points

related health, welfare, and productivity impacts) across sectors and economies worldwide Productivity loss is measured as the loss of work capacity resulting from

Estimates the percentage of work hours lost due to heat stress (and

- work delays or complete work disruptions caused by heat stress.
- RCP2.6 pathway is used as a representative value for the analysis because there is no significant difference in temperature increase between the other scenarios (RCP6.0), which represents the temperature range until 2030.

and Central Asia)

1.

3.

hazards

levels

estimates

Current and projected heat

Subregional and national

4. Conclusion and key findings

Part I. Adapting to heat-related

hazards through international labour

Part II. Complementary mitigation

efforts to reduce heat-related

2. Labour market trends

8. Employment and labour market policies

standards and tripartism

Outline

1. Heat stress and decent work

2. Global overview

- 1. Climate change and the rising incidence of heat stress
- 2. Labour market trends and exposure to heat stress
- 3. Methodology
- 4. Heat stress and its effect on labour productivity
- 5. Urban heat islands
- 6. Vulnerability of disadvantaged workers and subregions
- 3~7. Regional Analysis (Africa, America, Arab State, Asia and the Pacific, Europe

Source : International Labour Organization (ILO), Working on a warmer planet, (01 July 2019) * : Assumes industries that involve clerical or light physical labor as service industries

項目	詳細
Percentage of work hours lost due to heat stress	Time Horizon : 2030 Scenario : 2℃ scenario (RCP2.6) Region : Worldwide Industry and Conditions : Agriculture (shade)/Manufacturing/Construction (shade)/Services*.

List of available parameters

Table 6.1 Working hours lost to heat stress, by sector and country/territory, Eastern Asia, 1995 and 2030 (projections)

Country	1995					2030						
	Agriculture (in shade) (%)	Industry (%)	Construction (in shade) (%)	Services (%)	Total (%)	Total (thousand full-time jobs)	Agriculture (in shade) (%)	Manufacturing (%)	Construction (in shade) (%)	Services (%)	Total (%)	Total (thousand full-time jobs)
China	0.90	0.36	0.90	0.05	0.55	3780	1.88	0.91	1.88	0.16	0.78	5479
Hong Kong, China	2.80	0.80	2.80	0.01	0.45	16	5.62	2.57	5.62	0.23	0.81	43
Japan	0.40	0.12	0.40	0.01	0.10	64	0.99	0.39	0.99	0.04	0.21	126
Korea, Dem. People's Republic of	0.05	0.01	0.05	0	0.03	4	0.22	0.07	0.22	0.01	0.15	22
Korea, Republic of	0.10	0.02	0.10	0	0.03	6	0.48	0.15	0.48	0.01	0.08	21
Macau, China	0	0.96	0	0.02	0.55	1	6.08	2.89	6.08	0.29	1.13	3
Mongolia	0	0	0	0	0	0	0	0	0	0	0	0
Taiwan, China	0.79	0.18	0.79	0	0.19	17	1.85	0.60	1.85	0.04	0.39	49
Eastern Asia	0.87	0.31	0.87	0.04	0.49	3887	1.76	0.84	1.76	0.15	0.70	5743

- Table (for Japan) -

Japanese labour productivity in 2030 under the 2°C scenario (RCP2.6) is reduced by 0.99% in agriculture (shade), 0.39% in manufacturing, and 0.99% in construction (shade)

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execute 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

3-4-2. Goal setting	

Appendix

	page				
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internation and reference parameters and tools					
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1				
1-2-1. List of parameters	1-87				
1-2-2. Physical risk tools	1-189				
1-2-3. List of TCFD related literature	1-216				

Chapter 2 Definition, theory, practice, and reference information of ICP (internal carbon pricing)

2-1. Definition of internal carbon pricing2-2. Theoretical version of internal carbon pricing	2-1 2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	tion
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

The TCFD has issued recommendations, manuals and guidance on the recommended disclosure items, including scenario analysis

	C <u>ategory</u>	Document title and URL (Original/Japanese)	Overview
For those understand	TCFD recol as a	 Final Report: "Recommendations of the Task Force on Climate-related Financial Disclosures" (June 2017) (Original) https://assets.bbhub.io/company/sites/60/2021/10/FINAL-2017-TCFD-Report.pdf (Japanese) https://www.sustainability-fj.org/susfjwp/wp-content/uploads/2019/01/ccc822ae11df3bb3f0543d9bd3c7232d.pdf 	Final report providing background and frameworks for climate-related financial disclosures
looking to the general the TCFD	recommendation as a whole	 Annex: "Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures" (revised in October 2021)* > (Original) https://assets.bbhub.io/company/sites/60/2021/07/2021-TCFD-Implementing_Guidance.pdf > (Japanese) https://tcfd-consortium.jp/pdf/about/2021_TCFD_Implementing_Guidance_2110_jp.pdf 	Report providing detailed information that is useful when <u>implementing</u> <u>the recommended disclosure</u> <u>items</u>
For those looking	Stra	 Technical Supplement: "The Use of Scenario Analysis in Disclosure of Climate-Related Risks and Opportunities" (June 2017) > (Original) <u>https://assets.bbhub.io/company/sites/60/2021/03/FINAL-TCFD-Technical-Supplement-062917.pdf</u> > (Japanese) <u>https://www.sustainability-fj.org/susfjwp/wp-content/uploads/2019/01/ccc822ae11df3bb3f0543d9bd3c7232d.pdf</u> 	Report providing detailed information for referencing when <u>considering</u> <u>scenario analysis</u>
	Strategy	(Non-financial) ■ "Guidance on Scenario Analysis for Non-Financial Companies" (October 2020) > (Original) https://assets.bbhub.io/company/sites/60/2020/09/2020-TCFD_Guidance-Scenario-Analysis-Guidance.pdf	Guidance on practical processes for scenario analysis and ideas for resilience disclosures for different climate-related scenarios
to learn the details of the	Risk manage ment	 "Guidance on Risk Management Integration and Disclosure" (October 2020) (Original) https://assets.bbhub.io/company/sites/60/2020/09/2020-TCFD_Guidance-Risk-Management-Integration-and-Disclosure.pdf 	Guidance targeted at companies that integrate climate-related risks into their existing risk management processes and disclose this information
of the	Metrics & targets	 "Guidance on Metrics, Targets, and Transition Plans" (October 2021) (Original) https://assets.bbhub.io/company/sites/60/2021/07/2021-Metrics_Targets_Guidance-1.pdf 	Guidance explaining the latest trends in climate-related metrics, transition plans, and cross-industry climate- related metrics
Progress	Other	■ "2023 Status Report" (October 2023) > (Original) <u>2023-Status-Report.pdf (bbhub.io))</u>	Annual report explaining progress, insights, and challenges in climate- related disclosure (Issued annually from 2018)

*: The Annex includes financial and non-financial sectors (key sectors are energy, transport, materials/architecture, and agriculture/food/forestry products)

Some excerpts from the guidelines on TCFD and scenario analysis practices in Japan

Categor	y Document title and URL	Overview
For the generation of the second seco	 "Guidance on Climate-related Financial Disclosures 3.0 (TCFD Guidance 3.0)" (TCFD Consortium, October 2022) https://tcfdconsortium.jp/pdf/news/22100501/TCFD_Guidance_3.0)" (TCFD 	Explains the TCFD Final Report from a corporate perspective
For all ind nose looking derstand the gral concept the TCFD nmendations	 "Practical guide for Scenario analysis in line with the TCFD recommendations 2022" (Ministry of the Environment, March 2023) ※This guide 	Aimed at the smooth implementation of corporate scenario analysis in line with the TCFD recommendations; contains explanations covering procedures for those in charge of implementation to those for management, as well as summarized explanations of disclosure case studies, etc.
all industries	 "A Guide to Physical Risk Assessment in TCFD Recommendations: Flood Inundation Risk Assessment Based on Climate Change" (Ministry of Land, Infrastructure, Transport and Tourism, to be released at the end of March 2023) 	A manual for assessing the physical risks in corporate climate-related disclosures, especially those related to flooding
nose lookin	 "A Guide to Transition Plan" (TCFD Consortium, August 2024) <u>https://tcfd-consortium.jp/news_detail/24083001</u> 	A compilation of transition planning practices and examples based on each country's approach to transition planning
g to learn the recommend	(Banking) ■ "A Practical Guide to Implementing Scenario Analysis for Climate Change Risks and Opportunities in Line with the TCFD Recommendations (Banking Sector) ver. 2.0" (Ministry of the Environment, April 2022) https://www.env.go.jp/content/900518880.pdf	Released as guidance focusing on scenario analysis methods for quantifying and evaluating transition risks/physical risks that are reliable enough to withstand disclosure
By sector to learn the details of the inc recommendation items	 (Real estate) "Guidance for the Real Estate Sector on Addressing 'TCFD Recommendations for Climate-Related Financial Disclosures' (TCFD Response Guidance for the Real Estate Field)" (Ministry of Land, Infrastructure, Transport and Tourism, March 2021) https://www.mlit.go.jp/totikensangyo/totikensangyo_tk5_000215.html 	Comprehensive explanation based on progress of ESG investment covering information specific to the real estate sector for information disclosures in line with the TCFD recommendations; also covers illustrative examples of scenario analysis
ies By sector For those looking to learn the details of the individual TCFD recommendation items	 (Food products) "Introduction to Disclosure of Climate-Related Risks and Opportunities in the Food, Agriculture, Forestry, and Fishery Industries" (Ministry of Agriculture, Forestry, and Fisheries, June 2021) <u>https://tcfd-consortium.jp/pdf/news/21062401/visual-60.pdf</u> "Disclosure of Information on Climate-related Risks and Opportunities in Food, Agriculture, Forestry and Fisheries (Practical Edition)" (Ministry of Agriculture, Forestry, and Fisheries, June 2022) <u>https://www.maff.go.jp/j/press/kanbo/b_kankyo/attach/pdf/220603-5.pdf</u> 	Explains information on climate-related risks and opportunities for information disclosures in line with the TCFD recommendations for the food, agriculture, forestry, and fishery industries by sectors such as livestock and agricultural products
For investors nvestment related	 "Guidance for Utilizing Climate-related Information to Promote Green Investment 2.0 (Green Investment Guidance 2.0)" (Ministry of Economy, Trade and Industry, October 2021) <u>https://tcfd-consortium.jp/pdf/news/21100501/green investment guidance20-j.pdf</u> 	Explains perspectives from which investors and others can interpret corporate information disclosures based on the TCFD recommendations

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Observan 2. Dramanian fan metrum velated fin en siel die ele euro	201
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

3-4-2. Goal setting		
---------------------	--	--

Appendix

page	

Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international) and reference parameters and tools

1-1. TCFD scenario analysis Disclosure cases (domestic and international	1-1
1-2. TCFD scenario analysis reference parameters/tools	
	4 07

1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216

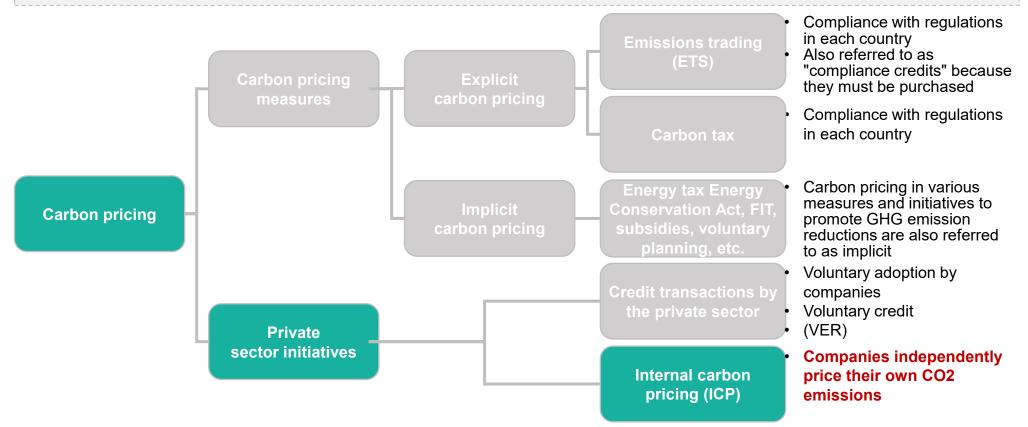
Chapter 2 Definition, theory, practice, and reference information of ICP (internal carbon pricing)

2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	tion
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	ference
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) . . .

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Tailored to the needs of the reader in a 3-tiered structure encompassing "definition," "theory," and "application"

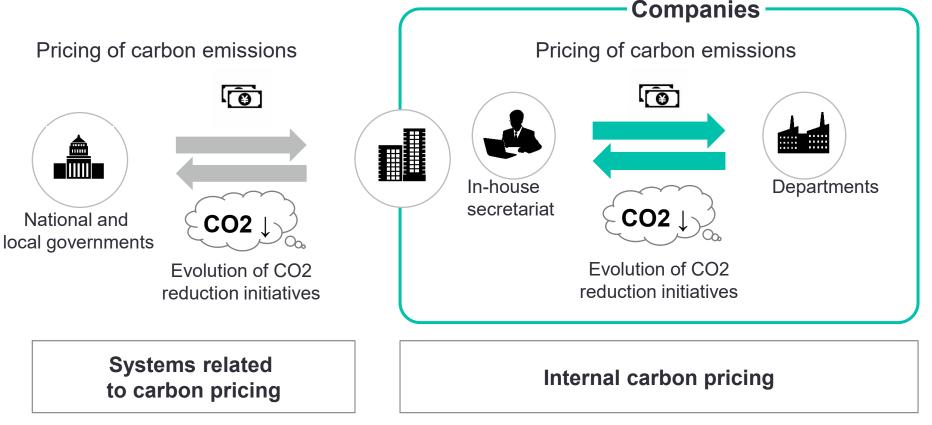

	Reader needs	Guidelines outline/summary
Definition	Management What exactly is ICP? I need a <u>summary</u> of why its implementation is important!	Section 2-1 Definition of internal carbon pricing Overview of what ICP is, the significance of its implementation, and its current adoption rate
Theory	Manager I want to know <u>how to</u> <u>implement</u> ICP and <u>major consideration</u> <u>points</u> !	Section 2-2 Theory of internal carbon pricing Overview of three items to be considered as prerequisites for implementing ICP
Appli	Manager I want to know <u>more</u> <u>detailed processes for</u> <u>considering the</u> <u>implementation</u> of ICP!	Section 2-3 Application of internal carbon pricing Detailed overview of practical points to consider when implementing ICP
Application	Manager I want <u>examples/case</u> <u>studies or other</u> <u>information on</u> <u>domestic/international</u> <u>ICP implementations.</u>	 Section 2-4 Application of internal carbon pricing reference information Information to reference when implementing ICP (E.g., FAQs, term lists, domestic/international ICP case studies)

Overview of carbon pricing

ICP - Implementation

Carbon pricing refers to the pricing of carbon emissions. These guidelines give an overview of internal carbon pricing (ICP) - a tool to promote decarbonization investment by companies.

- Putting a price on carbon emissions is called carbon pricing
- Carbon pricing can be broadly classified into those regulated by the government (carbon pricing measures) and those provided by the private sector (voluntary credit (VER) issued by international organizations, internal carbon pricing (ICP), etc.)
- These guidelines explore "internal carbon pricing," a private sector initiative in which companies set their own prices for carbon emissions voluntarily

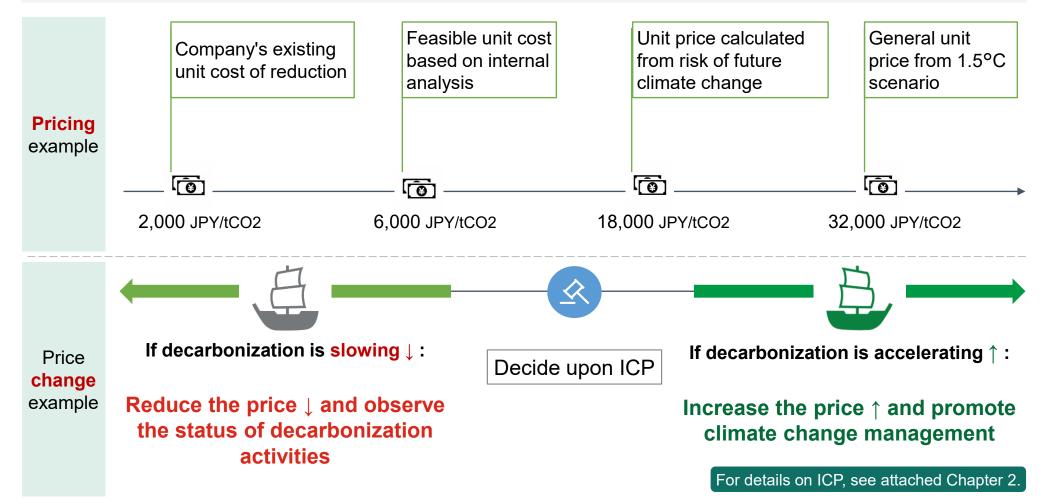


What is internal carbon pricing (ICP)?

ICP - Implementation

Internal carbon pricing (ICP) refers to carbon prices that are set and used internally to promote decarbonized business.

- Carbon pricing estimated internally by the company, used to promote investments in decarbonization efforts by companies
- A methodology used for corporate planning linked to climate change-related targets (carbon neutral/SBT/RE100)*, which can be used as an incentive to promote decarbonization, identify revenue opportunities and risks, or guide investment decisions


*For climate change-related targets (SBT/RE100), see pages 152-153

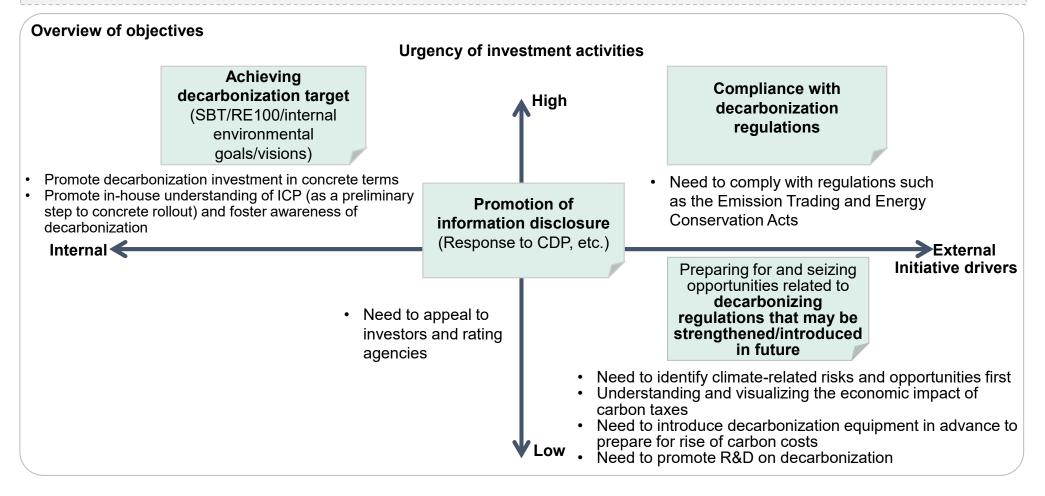
What is ICP: Organizational benefits of implementation

ICP - Implementation

A major feature of the ICP is the ability to flexibly manipulate carbon prices in line with world trends and with the pace of internal decarbonization initiatives.

- Companies can flexibly change their investment and business activities for decarbonization in light of social trends.
- The flexibility to raise and lower prices also avoids corporate decision-making risks (i.e., once a decision to decarbonize is made, it must be followed through and can't be halted).

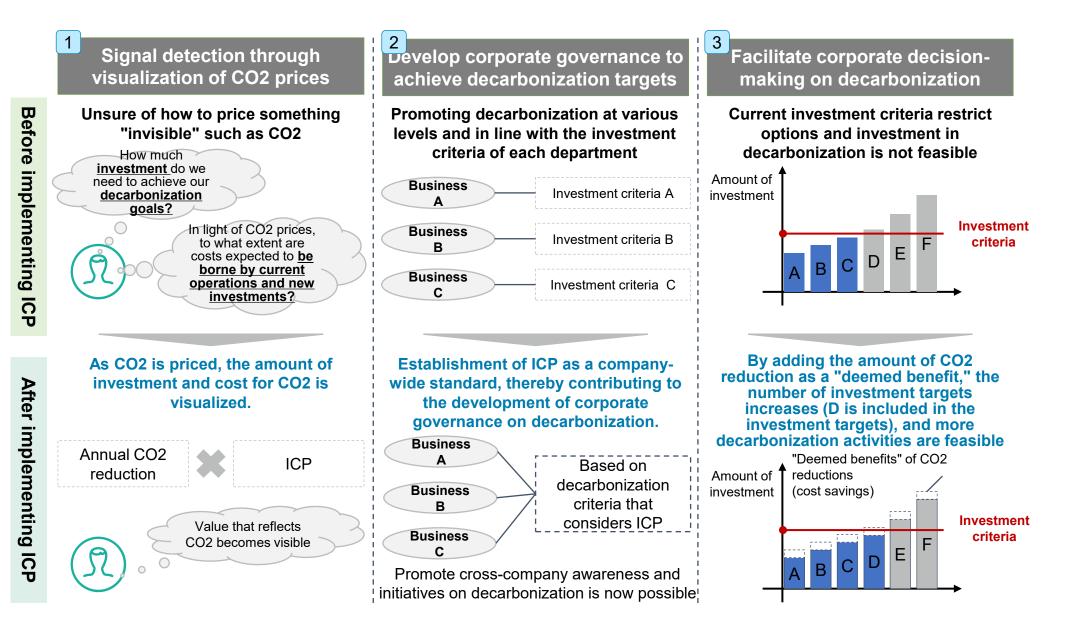
Objective of implementing ICP


ICP - Implementation

The objectives of implementing ICP can be classified into two axes: "Initiative drivers" and "Urgency of investment actions."

• It is important to align "the objective of ICP" as "the objective of decarbonization investment"

• This is an issue that should be considered at the outset, as the pricing and adoption methods vary depending on the objectives for implementing ICP.


Broadly classified into "initiative drivers(internal and external factors)" and "urgency of investment activities"

Benefits of implementing ICP (1/2)

ICP - Implementation

The implementation of ICP will make it possible to "detect signals through the visualization of CO2 prices," "establish company-wide governance to achieve decarbonization targets," and "facilitate decision-making on decarbonization investments."

Benefits of implementing ICP (2/2)

ICP - Implementation

Including in meeting and decision-making documents allows for items to reach the eyes of decision makers, which can lead to progress in discussions and initiatives for decarbonization, and to the creation of a sense of ownership in each sector

Benefits of implementing ICP

<u>Under a new perspective of converting CO2 emissions into monetary value, costs relative to CO2 are visualized,</u> <u>and decision-making linked to awareness-building and decarbonization investment is promoted</u>

1 Single detection

As CO2 is priced, the amount of investment and cost for CO2 is visualized.

2 Improvement of corporate governance

The ICP will be set as a cross-company standard, and it will be possible to foster decarbonization awareness.

3 Facilitation of decarbonization decision-making

The amount of CO2 reduction is considered as a "deemed benefit" and more decarbonization activities are available for investment.

Comments on the impact of implementing ICP obtained from interviews with

companies that have introduced ICP

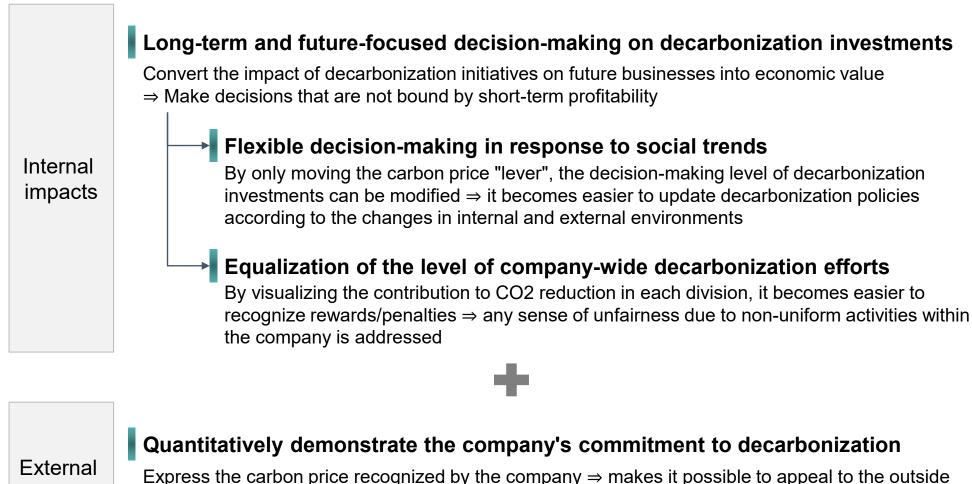
Costs related to CO2 can be routinely visualized in the decision-making process

- Once included in meeting and decision-making documents, the environmental efforts of each division, which had not received much attention before, were made visible to decision-makers in management.
- The management committee now has questions on environmental initiatives

A sense of ownership toward achieving decarbonization targets was fostered

- Increased awareness of CO2 in each sector
- Investments in equipment that helps reduce CO2 emissions have been initiated
- Group companies, subsidiaries, and divisions are seriously considering the implementation of ICP, and awareness is being fostered

Discussions linked to medium- and long-term decision-making were promoted, and progress was made in decarbonization investments


- Discussions have begun to link CO2 pricing to decision-making on business opportunities to focus on/pull back from
- Decarbonization efforts are being promoted and the decarbonization of businesses is being accelerated

impacts

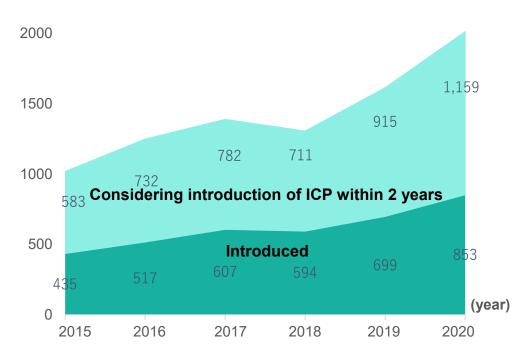
Internal and external impact of implementing ICP

ICP - Implementation

Flexible decision-making and multiple internal/external impacts

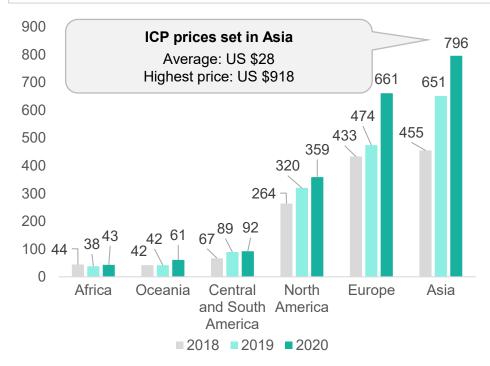
Express the carbon price recognized by the company \Rightarrow makes it possible to appeal to the outside world that the company is conducting business operations while balancing economic performance and climate change measures

Responses from CDP also asked for ICPs, and the TCFD recommended the implementation of ICPs


Current status of ICP introduction > Global

ICP - Implementation

Number of companies that have introduced ICP is increasing around the world

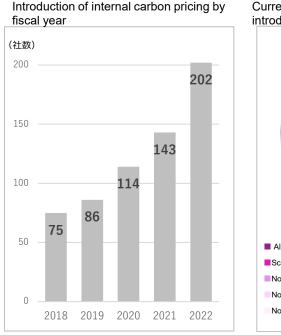

Trends in introduction and consideration status of ICP

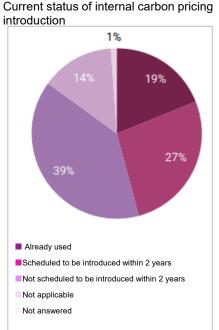
- From 2015 to 2020, the number of companies introducing or considering introducing ICP have increased by more than 80%.
- More than 2,000 companies have indicated in their CDP responses that they have introduced or are considering introducing ICP.
- The combined aggregate market value of these companies now exceeds US \$27 trillion, up from US \$7 trillion in 2017.

Current status of ICP introduction and prices by region

- Since 2018, the total number of companies in Asia that have introduced or are considering introducing ICP has increased the most. Particularly in China, the number of companies introducing or considering introducing ICP has increased by more than 27%
- The median ICP price disclosed by companies in 2020 was US \$25/tCO2. Carbon prices in the EU have soared to record levels as more countries adopt carbon pricing regulations

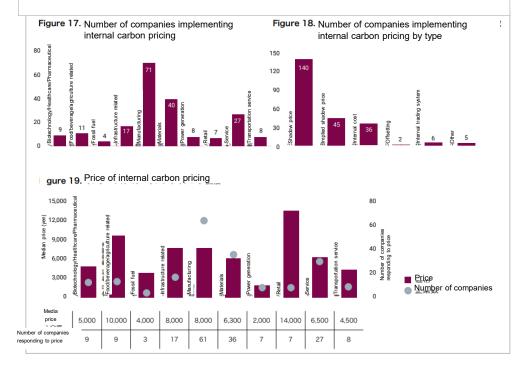
Source: CDP Report, Putting a price on carbon : The state of internal carbon pricing by corporates globally (2021)


Current status of ICP introduction > Japan


ICP - Implementation

In Japan, the number of companies that have introduced ICP is expanding, with the number of companies that have already introduced ICP or will introduce it within two years approaching half of the total. However, the state of introduction, type, and price seem to vary greatly among sectors.

Trends in introduction and review status of ICP (2022)


- In Japan, the number of companies that have adopted ICP has increased rapidly from 75 in 2018 to 202 in 2022.
- 27% of companies are planning to introduce the ICP within two years, and 46% of companies, including those that have already introduced the ICP, have answered positively about incorporating the ICP into their corporate management.
- It can be said that the interest in and the understanding of the introduction of the ICP have increased due to the issuance of additional guidance on the TCFD and the increase in the number of introduction cases.

Overview of companies that have introduced ICP

- By sector, the manufacturing sector accounted for the largest share, followed by the materials sector, the service sector, and infrastructure sector.
- The distribution of ICP by type shows that shadow prices are the most common, followed by implicit prices and internal costs.
- As for pricing, there is a large difference in the median value between the retail sector (14,000 yen) and the power generation sector (2,000 yen).

Current Status of ICP Introduction in Japanese Companies

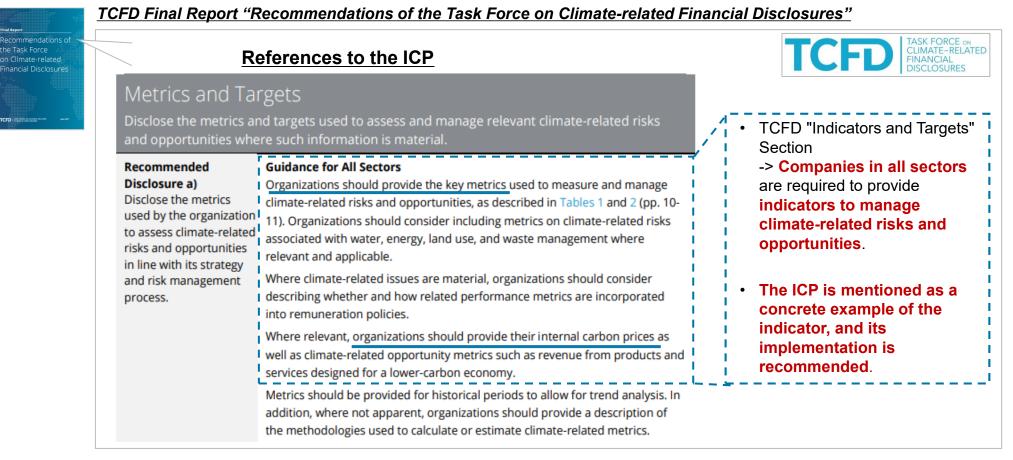
Among Japanese companies, 278 companies have introduced ICP or plan to do so within 2 years

Companies that responded that they have introduced	Companies that say they plan to implement ICP within two years
282 companies	392 companies

ICP and those that plan to introduce it within two years among companies that received an " A " rating in CDP 's climate change questionnaire

Apparel	ҮКК		
Infrastructure		Ichigo / Daiseki / Mitsubishi Estate / Kajima Corporation / New Nippon Airways / Mori Building Fujita	
Service	Pharmaceulical / Damppon Printing / Dalwa House REIT Investment Corporation Dalwa House Industries / Tokyu Land HD/ Tokio Marine HD /	Concordia Financial Group / Mitsubishi Estate Logistics REIT Investment Corporation / Industrial Fund Investment Corporation / Japan Prime Realty Investment Corporation / Hakuhodo DY HD/ Hachijuni Bank /	
Biotechno Healthcare	Biotechnology, Healthcare, Pharmaceuticals / Astellas Pharma/Shionogi & Co./Ono Pharmaceutical / Otsuka HD / Daiichi Sankyo/Chugai Pharmaceutical / Fujifilm HD / Takeda Pharmaceutical		
Transportation services	ANA HD/ Mitsui O.S.K. Lines / Kawasaki Kisen / NYK Line	SGHD	
Retail	Toyota Tsusho	J.Front Retailing / Mitsukoshi Isetan HD/ Joshin Electric / Fuyo General Lease / AEON	
Food/Beverage/ Agriculture	, Asahi Group HD/ Suntory HD/ Japan Tobacco / Ajinomoto / Meiji HD	Coca-Cola Bottlers Japan HD/ Sumitomo Forestry /	
Manufacturing	•	Azbil / FP Corporation / Fanuc / Yokohama Rubber / Okamura Manufacturing	
Material	KAO/ Taiheiyo Cement / Tokyo Steel	Kose / Paula Orbis HD/ Shiseido	

Source: Created by the Ministry of the Environment with information provided by CDP Worldwide-Japan


ICP - Environment

External environment surrounding the ICP (1): TCFD and ICP (1/2)

ICP - Implementation

Introduction of the ICP is recommended in the disclosure requirements section of the TCFD

- The TCFD published the "TCFD Recommendations" in June 2017, which provide a framework for requiring companies to disclose information on climate change-related risks and opportunities.
- It calls on companies to promote management that is responsive to climate change through disclosure of four elements: "governance", "strategy", "risk management", and "indicators and targets". Among them, the disclosure of "indicators and targets" section recommends the introduction of ICP.

ICP - Environment

External environment surrounding the ICP (1): TCFD and ICP (2/2)

ICP - Implementation

The TCFD guidance on indicators and targets describes the use and setting of the ICP

The guidance on indicators and targets released by the TCFD in October 2021 explains the purpose of using the ICP, the methodology for setting ICP, and ICP disclosure

TCFD "Guidance on Metrics, Targets, and Transition Plans"

References to the ICP				
Sections	Contents			
General use of the ICP	 Measuring Performance: Carbon-adjusted earnings per share, expected profitability, incentives for energy savings, identification of revenue opportunities and risks, procurement and supply chain management, etc. Position management: Valuation of assets, etc. Investment decisions: identification of low-carbon, high-return investment opportunities, fixed investment plans, and determination of th cost-effectiveness and net present value of projects, etc. Strategy: Assessment of future policy responses to climate change, including the potential for explicit and implicit carbon pricing, impacts on overa economic growth and sector demand, and technology and cost benefits Risk management: Measurement, modeling, and management of GHG emissions 			
About ICP Settings	 In order to set an ICP, it is necessary to understand how to use the ICP, the appropriate form for the various uses of the ICP, and the approach to determine the price level Effective carbon pricing also has the following characteristics Prices and pricing methods should be based on reliable and reputable scientific research in the light of social climate objectives. At a minimum, the organization should consider a carbon price aligned with the thermometer path well below 2°C The organization's ICP price must be consistent with the price implied by the organization's climate-related targets (e.g., the 2050 net zero, the Paris Agreement) The ICP should rise over time to reflect the decline in the carbon budget The organization should recalculate as necessary to take into account climate policies and regulations, or the lack thereof, that suggest rapid price increases The ICP may need to reflect geographical and sectoral differences when significant impacts or reliable sources of information are found 			
About Disclosure of the ICP	 Consideration should be given to providing the following detailed information regarding the ICP Methodology used to set the ICP How the ICP reflect the implicit costs of various climate policies (e.g., performance standards, renewable energy portfolio standards, explicit cost of GHG emissions (e.g., carbon taxes, cap and trade)) Types and shares subject to carbon pricing (Scope 1, 2, 3) Assumptions about how the ICP will change over time in response to reductions in carbon budgets, policy changes and changes in emissio projections Scope of ICP implementation (region/business) and whether it is applied as a margin-based cost Whether the organization uses a common ICP or a differentiated ICP 			

ICP - Environment

External environment surrounding the ICP (2): CDP and ICP

ICP - Implementation

The CDP's Climate Change Questionnaire requires responses regarding the ICP

Version control - climate change		(C11.3	 B) Does your organization use an •Yes 	internal price on carbon?		
CDP disclosure cycle 2023		 •No, but we anticipate doing so in the next two years •No, and we don't anticipate doing so in the next two years 				
About the CDP climate change questionnaire		(C11.3a) Provide details of how your organization uses an internal price on carbon				
C0 Introduction	\sim	1	Type of internal carbon prices	Select from: Shadow price/Internal fee/Internal trading/Implicit price/Other, please specify		
C1 Governance	\sim	2	How the price is determined	Select all that apply: Alignment with the price of allowances under an Emissions Trading Scheme/Alignment with the price of a carbon tax/Social cost of carbon/Price/cost of voluntary carbon		
C2 Risks and opportunities	~			offset credits/Cost of required measures to achieve emissions reduction targets/Benchmarking against peers/Price with material impact on business decisions/Other, please specify		
C3 Business strategy	\sim	3	internal carbon price	Select all that apply: Change internal behavior/Drive energy efficiency/Drive low-carbon investment/Identify and seize low-carbon opportunities/Navigate GHG regulations/Stakeholder		
C4 Targets and performance	~			expectations/Stress test investments/Reduce supply chain emissions/Set a carbon offset budget/Other, please specify		
C5 Emissions	\sim	4	Scope(s) covered	Select all that apply: Scope 1/Scope 2/Scope 3 (upstream)/Scope 3 (downstream)		
methodology		5	Pricing approach used - spatial variation	Select from: Uniform/Differentiated/Other, please specify		
C6 Emissions data	\sim	6	Pricing approach used - temporal variance	Select from: Static (on time axis)/Evolutionary (on time axis)/Other, please specify		
C7 Emissions breakdown	\sim	7	Indicate how you expect the price to change over time*	Text field [maximum 1,000 characters]		
C8 Energy	~/	8	Actual price(s) used - minimum (currency as specified in C0.4 per metric ton CO ₂)	Numeric field [Enter a number from 0-999,999,999,999,999, using a maximum of 2 decimal places and no commas]		
C9 Additional metrics C10 Verification		9	Actual price(s) used - maximum (currency as specified in C0.4 per metric ton CO ₂)	Numeric field [Enter a number from 0-999,999,999,999,999, using a maximum of 2 decimal places and no commas]		
C11 Carbon pricing	\sim	10	Business decision-making processes this internal carbon price is applied to	Select all that apply: Capital expenditure/Operations/Procurement/Product and R & D/Remuneration/Risk management/Opportunity management/Value chain engagement/Public policy engagement/Other, please specify		
C15 Biodiversity	~	11	Mandatory enforcement of this internal carbon price within these business	Select from: Yes, for all decision-making processes/Yes, for some decision-making processes, please specify/No		
C16 Signoff	Ť		decision-making processes			
Important information Terms for responding (2023 Climate Change)		12	Explain how this internal carbon price has contributed to the implementation of your organization's climate commitments and/or climate transition plan	Text field [maximum 2,500 characters]		
Copyright						

Source: CDP, *Climate Change 2023 Questionnaire*, https://guidance.cdp.net/ja/guidance?cid=46&ctype=theme&idtype=ThemeID&incchild=1µsite=0&otype=Questionnaire&page=1&tags=TAG-646%2CTAG-605%2CTAG-599 (As of February 2024)

External environment surrounding the ICP (3): ISSB and ICP

ICP - Implementation

Disclosure of information on whether and how the ICP are applied, and on carbon prices is required according to IFRS S2 "Climate-related disclosures" of the IFRS "Sustainability Disclosure Standard" which the ISSB has published in 2023

(Outline of standards)

 The International Sustainability Standards Board (ISSB), which was established by the IFRS Foundation in November 2021 for the purpose of developing international standards (global baselines) that contribute to the improvement of consistency and comparability of corporate sustainability disclosures, published the "General Requirements for Disclosure of Sustainability-related Financial Information" (S1) and "Climate-related disclosures" (S2) of the IFRS "Sustainability Disclosure Standard" in June 2023.

(Application schedule)

 The application of both S1 and S2 has been begun in January 2024, and the IFRS Foundation has recommended their application to the regulatory authorities of each country. In line with the recommendations, it is expected that regulatory authorities of each country will develop sustainability disclosure rules based on both standards as a baseline, and companies will be required to disclose in accordance with the rules of their jurisdiction.

- It calls for climate-related disclosures in line with four core competencies: governance, strategy, risk management, and indicators and targets based on the TCFD Recommendations.
- Call for more sophisticated and detailed information disclosure than the TCFD, including mandatory disclosure under Scope 3.
- Set disclosure items for 11 industries and 68 sectors as industry-specific disclosure requirements, and call for disclosure in line with these items.

ICP Disclosure Reques	t (Indicators and	targets)
-----------------------	-------------------	----------

Original text

(f) internal carbon prices—the entity shall disclose:

- (i) an explanation of whether and how the entity is applying a carbon price in decision-making (for example, investment decisions, transfer pricing and scenario analysis); and
- (ii) the price for each metric tonne of greenhouse gas emissions the entity uses to assess the costs of its greenhouse gas emissions;

External environment surrounding the ICP (4): CSRD and ICP

ICP - Implementation

The CSRD requires disclosure of information on the applicability of the ICP, types, purpose of their use, scope, price levels and the background of their settings

(Outline of standards)

- The final article of the Corporate Sustainability Reporting Directive (CSRD) was published by the European Commission on December 16, 2022 as a new directive on corporate sustainability disclosure. It was proposed to improve the sufficiency, reliability, comparability, and accessibility of sustainability-related information.
- (Application schedule)
- The schedule for the mandatory reporting of sustainability-related information under the CSRD varies by company size and other factors. Listed companies with 500 or more employees will be subject to the CSRD from January 2024, large companies other than those listed above will be subject to the CSRD from January 2025, and listed SMEs will be subject to the CSRD from January 2026.

ICP Disclosure Request

Original text

AG 10. The undertaking shall disclose whether it applies internal carbon pricing schemes, and if so, how they support its decision making and incentivise the implementation of climate-related policies and targets.

AG 11. The information required by paragraph AG10 shall include: (a) the type of internal carbon pricing scheme, for example shadow prices for CapEx or research and development investment decision making, internal carbon fees or funds; (b) the specific scope of application of the carbon pricing schemes (activities, geographies, entities, etc.); (c) the carbon prices applied according to the type of scheme and critical assumptions made to determine the prices, including the source of the carbon prices applied and why they are deemed relevant for their purpose of application; the undertaking may disclose the calculation methodology of the carbon prices, to which extent they have been set using scientific guidance and how the future development of carbon prices is related to science-based carbon pricing trajectories; and (d) the approximate current year gross GHG emission volumes by Scope 1, 2 and 3 in metric tons of CO2 equivalent covered by these schemes, as well as their share of the undertaking's overall GHG emissions in the respective Scope.

AG 12. If applicable, the undertaking shall briefly explain how the carbon prices used in internal carbon pricing schemes are compatible with those used in financial statements and financial planning particularly for the assessment of useful life and residual value of intangibles, property, plant and equipment, for the impairment of assets or for the fair value measurement of business acquisitions.

Requires companies to report using the European Sustainability Reporting Standards (ESRS) developed by the European Financial Reporting Advisory Group (EFRAG).

Among the topical standards, ESRS E1 is the disclosure standard on climate changerelated information. External environment surrounding the ICP (5): SEC and ICP

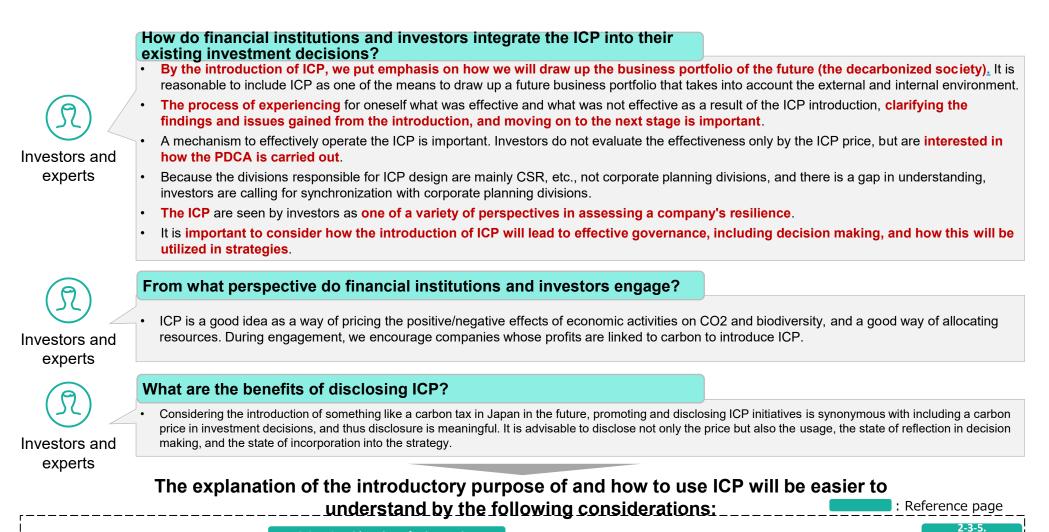
ICP - Implementation

The SEC is also preparing for a climate change-related disclosure requirement. As for the ICP, disclosure of information such as carbon prices, application scope, and effects on climate-related risk assessment and management will be required.

(Outline of standards)

The U.S. Securities and Exchange Commission (SEC) has published a draft for rules on climate change disclosure on March 21, 2022. The draft establishes disclosure items for both non-financial and financial information, and the non-financial information disclosure is based on the Task Force on Climate-Related Financial Disclosures (TCFD) protocol and the GHG protocol.

(Application schedule)


The application date is expected to be phased based on the status of SEC-registered companies. Application will begin in fiscal year 2023 for large accelerated filers, which is the earliest among the filers, in fiscal year 2024 for accelerated filers and for non-accelerate filers, and in fiscal year 2025 for SRCs.

1	ICP Disclosure Request
Title 17 Commostly and Securities Exchanges Chapter L Commostly futures Trading Commission Chapter II Securities and Exchange Commission Part200 Organization; Conduct and Ethics; and Information and	Original text
P1139 Month P1	 (e) (1) If a registrant maintains an internal carbon price, disclose: (i) The price in units of the registrant's reporting currency per metric ton of CO2e; (ii) The total price, including how the total price is estimated to change over time, if applicable; (iii) The boundaries for measurement of overall CO2e on which the total price is based if different from the GHG emission organizational boundary required pursuant to § 229.1504(e)(2); and (iv) The rationale for selecting the internal carbon price applied.
response to the TCFD frame. Regulation S-K Item 1502 on "Strategy" calls for disclosure of information on	(2) Describe how the registrant uses any internal carbon price described in response to paragraph (e)(1) of this section to evaluate and manage climate-related risks.
price levels, application scope, and methods of use of the ICP, as well as description of risks and opportunities and consideration of business impacts based on the TCFD classification.	(3) If a registrant uses more than one internal carbon price, it must provide the disclosures required by this section for each internal carbon price, and disclose its reasons for using different prices.

Investor's assessment of the ICP

ICP - Implementation

Financial institutions and investors place importance on how the introduction of the ICP is utilized in management strategies

- Set price of the ICP
- Methods of use of the ICP
- Structure of ICP

2-2-1. Consideration of price setting

2-2-2. Consideration of utilizing method

2-2-3. Consideration of internal structure and future initiatives

- Scope of application of ICP and applicable companies
- Linkage between CO2 reduction targets and investment
- Budgetary controls and budget caps for ICP

Consideration (4) 2-3-6.

Consideration (5)

2-3-7

Consideration (6

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations	1-1 1-5 1-16 1-52
INFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execution	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

Appendix

• •	
	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and interna	tional)
and reference parameters and tools	,
1-1. TCFD scenario analysis Disclosure cases (domestic and international	1-1
1-2. TCFD scenario analysis reference parameters/tools	
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (ir	iternal
carbon pricing)	
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application ar	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 redu	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	0.00
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re information	eference 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	
2-4-2. List of companies that have introduced ICP in Japan	2-111
	2.00

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

To introduce ICP, it is necessary to first understand the contents of Chapter 1, and then consider the "set price," "application," and "system related to ICP

		Step	Key issues	Keywords
	1	Consideration of the introductory purposes	• What is the purpose of introducing ICP on the basis of internal emissions?	Current status of internal emissionsEmission reduction target
How to set the ICP	2	Consideration of the set price	 Which of the four methods (external pricing, internal discussions, etc.) should be used? What is the use of internal ICP, and is it used as an investment standard? 	 External prices Peer companies' price benchmark Internal discussion on decarbonizing prices Mathematical analysis of CO2 reduction targets
	3	Consideration of application purpose and decision- making processes	 What is the use of the ICP and is it used as an investment standard? First of all, in cases where reference values (visualization) for investment are used, which document (e.g., request for investment decision) should be included as reference values? 	 Visualized as a reference value for investment Use in investment indexes (investment standard value) Use in investment indexes (lowering of investment standard) Internal fee (recovery of funds based on emissions)
How and to what extent should the ICP	4	Consideration of organizational structure	How will the ICP be promoted?Which departments/divisions are involved in the promotion?	 Use in existing departments/divisions Launching of new departments/divisions
be applied?	5	Consideration of scope of applications and applicable companies	 Among Scope 1 (investment in energy-saving), Scope 2 (investment in renewable energy), and Scope 3 (e.g., procurement of raw materials, R&D, M&A), what is the scope to which the ICP applies? (In case of holdings) How far should ICP be introduced in domestic, overseas, and group companies? 	 Scope 1 (energy-saving), Scope 2 (renewable energy), Scope 3 (procurement of raw materials, R&D), etc. Domestic head office, domestic group companies, overseas sites/subsidiaries
How to	6	Consideration of linkage between reduction targets and investments	 Is there currently a quota for investment and is the amount of decarbonization investment linked to the company's climate objectives (e.g., the 2050 net zero)? 	 Set the amount of investment for decarbonization linked to CO2 reduction targets (Not set)
manage investments and budgets regarding ICP	7	Consideration of budget control and budget cap	 (When ICP are reflected in investment standards) How will the budget be managed?/Which departments/divisions will be responsible for budgetary controls and the accumulation of ICP-related investment information (e.g., which facilities, investment amounts)? (When ICP are reflected in investment standards) Should budget cap be implemented?/If so, how? (Set according to the annual CO2 reduction target) 	 Budget control/business divisions apply for ICP budget at corporate headquarters/Apply for ICP budget and allocate budget to business divisions Calculate the budget based on the results of the previous year's ICP utilization and the annual CO2 reduction target

Section 2 introduces "price setting," "applications," and "in-house systems and future initiatives"

	Consideration of price setting Consider setting prices for ICPs that are used uniformly within the company	Consideration of applications and decision-making processes Decide how to use ICPs to promote decarbonization investment	Review of internal systems Determine internal systems and future initiatives based on set prices and usage methods
Overview	 Set ICP price per t-CO2 There may be multiple prices depending on the investment and timelines. The price varies depending on why ICP is implemented, the level of understanding throughout the company, and the adoption methods. 	 Adoption methods are also classified according to whether or not funds are exchanged within the company. When there is no exchange of funds, there are two methods: one is to use ICP for investment decision-making, and the other is to first visualize the CO2 value and present it as reference information for investments. 	 Determine the main internal organization, post-implementation plan (roadmap), scope of application, and time frame for implementation. It is necessary to involve the relevant departments and obtain the commitment of upper management to make progress.
Decision process	 Determined based on external prices, past results, reduction targets, etc. 	• Determined based on the existence of internal fund transactions and the degree of understanding (usage) of ICP within the company	 Although the success factors differ from company to company, this guideline introduces the following examples: Development of an implementation roadmap that defines the scope of
Examples	 Examples of the following patterns exist Single price point Set multiple prices Example: Set according to the purpose of use such as R & D 	 Examples of the following patterns exist Visualization of economic impact Use of investment thresholds Easing of investment criteria Establishing a decarbonized investment fund 	 Examining the organizational structure and division of roles within the company Example: Establishment of departments and committees in charge Obtaining commitment on decarbonization from senior management
Key points	Considering pricing based on objectives	Present realistic trajectories based on the degree of understanding within the company (whether investment criteria can be applied immediately)	A timeline that aligns with corporate realities is critical

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-5 1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execution	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

4-1. TNED SCENARD ANALYSIS	5-4
4-2. Goal setting	3-

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internati and reference parameters and tools	onal)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ernal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66 2-70
2-3-4. Consideration (3) : Consideration of internal structure2-3-5. Consideration (4) : Consideration of the scope of ICP application and	-
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and ref information	erence 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136
	•

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Consideration of price setting

Proceed with a 3-stage price setting process

Understand price types

- Understand ICP price types (Shadow price, Implicit carbon price)
- The type selected depends on how ICP is used

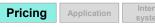
Consider pricing methodology

2

- Pricing methodologies can be classified into the following four types
 - Referencing external prices
 - Peer benchmarks
 - Past internal discussions
 - Analysis based on CO2 reduction targets
- Consider which method to use based on difficulty and the effectiveness of the climate-change initiative

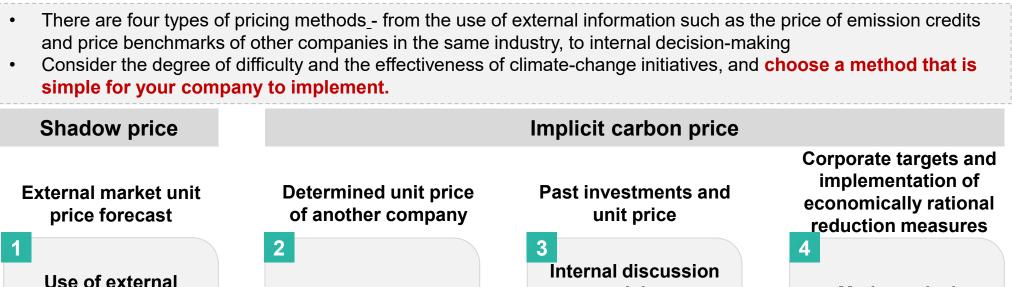
Determine degree of internal agreement

- Understand degree of agreement on decarbonization investments within the company
- Consideration of ICPs in line with the degree of internal agreement
 - Initially set based on current circumstances (external carbon price, results of past internal discussions, etc.)



1 Understand price types

ICP prices are classified into two types


- Shadow price: Setting a hypothetical carbon price **based on assumptions** (a priori)
- Implicit carbon price: A price calculated based on historical performance, etc.

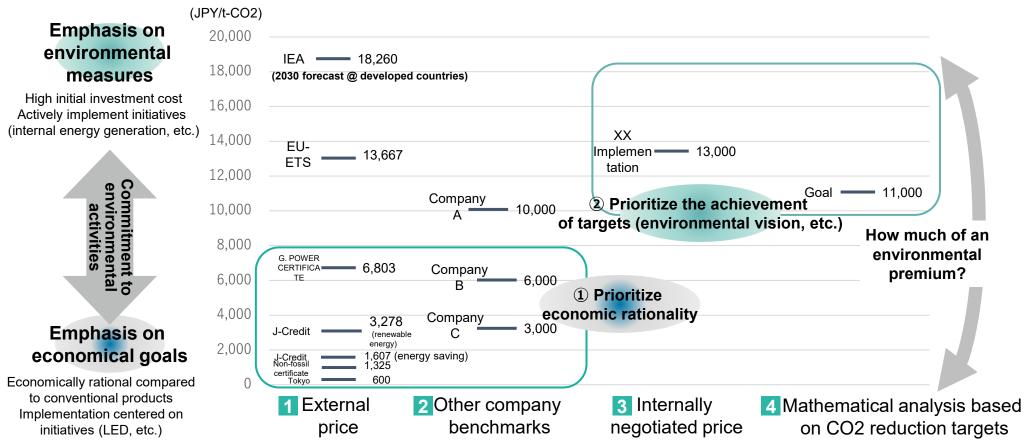
	Categorized by pricing method	Examples
Shadow price	Explicit Carbon pricing based on assumptions	Use of external pricing (Emissions right price, etc.)
Implicit carbon price	Implicit Prices calculated and set based on historical performance	Mathematical analysis based on price benchmarks of other companies in the same industry, internal discussions on prices that encourage decarbonization investments, and CO2 reduction targets

2 Consider pricing methodology

It is important to select an ICP pricing methodology that is in line with the company's initiatives, while taking into account the "difficulty of price setting" and the "effectiveness of decarbonization measures."

on pricing to **Mathematical** Benchmark of pricing analysis of CO2 encourage (Emissions right competitor prices decarbonization reduction targets price, etc.) investments Example: Refer to IEA and GX **Example: CDP Report Example: Calculated from** Example: Calculated from CO2 League emission rights prices Refer to the amounts listed ICP levels that would reduction targets and (2030: 5-100 USD/tCO2) have influenced past decisions marginal cost curve **Difficulty of price setting** High Low Effectiveness of decarbonization measures Small Large

Source: Ministry of the Environment, Guidelines for the Use of Internal Carbon Pricing - Promotion of Decarbonized Investment by Companies - FY 2022 Version, partially revised.

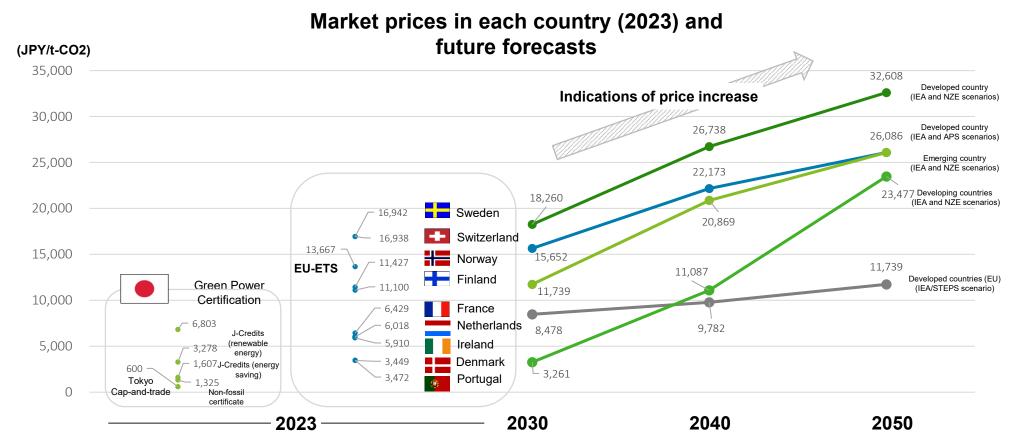

2 Consider pricing methodology > Rough standard for each method

Options vary depending on the degree of agreement on environmental initiatives within the company

There are 4 methodologies for pricing as outlined below.

 It is important to determine the price based on the degree of agreement on environmental initiatives within the company by clarifying the "degree of willingness of the company to take measures" and the "size of the economic tolerance."

ICP prices by pricing method (example)



Consider pricing methodology > 1 Use of external prices

Determine levels based on the carbon price linked to each country's carbon tax, emissions trading, etc., and the future price projected by the IEA and other organizations

- Applicable to carbon prices linked to carbon taxes, emissions trading, etc.
- The IEA suggests that carbon pricing will increase between 2030 and 2050 to achieve the 1.5°C threshold

* USD 1 = JPY 150.94, EUR 1 = JPY 161.62 (as of November 9, 2023) * EU-ETS prices as of January 31, 2023 are used. * Future forecasts for 2030, 2040 and 2050 are based on IEA WEO2022 and exchange rates as of January 31, 2023 are used. * The Green Power Certification is provisionally set at JPY3/ kWh. * The CO2 emission factor for electricity is the Ministry of the Environment's "Emission Factor for Each Electricity Utility (for calculating greenhouse gas emissions from specified emitters) - Results for FY2021 - R5.1.24." Alternative value "0.000441 (t-CO2/kWh)" announced by the Ministry of the Environment and the Ministry of Economy, Trade and Industry. <u>https://ging-santeik.ohyo.env.go.jp/calc</u> Source : Non-fossil certificate: Agency for Natural Resources and Energy website (<u>https://www.enecho.meti.go.jp/category/electricity and_gas/electricinonfossil/katsuyou_joukyou/</u>), J-Credit System average successful bid price (<u>https://japancredit.go.jp/ender/</u>), Tokyo Cap-and-trade: Bureau of Environment, Tokyo Metropolitan Government website (<u>http://www.kankyo.metro.tokyo.jp/climate/large_scale/trade/</u>) < EU-ETS (<u>https://tradingeconomics.com/commodity/carbon</u>) < IEA [World Energy Outlook2023] (https://iea.blob.core.windows.net/assets/66b8/989-971c-4a8d-82b0-4735834de594/WorldEnergyOutlook2023.2, df) , World Bank "Carbon Pricing Dashboard" (<u>https://carbon.pricingdashboard</u>, <u>ourldbank.org/</u>) - price rate 1 (highest value) 2 Consider pricing methodology > 1 Use of external prices > Selection of referential external prices based on transaction scope/target/categorization

In addition to the EU-ETS, there is also a method of determining levels by referring to multiple external prices in Japan

Detailed external pricing list

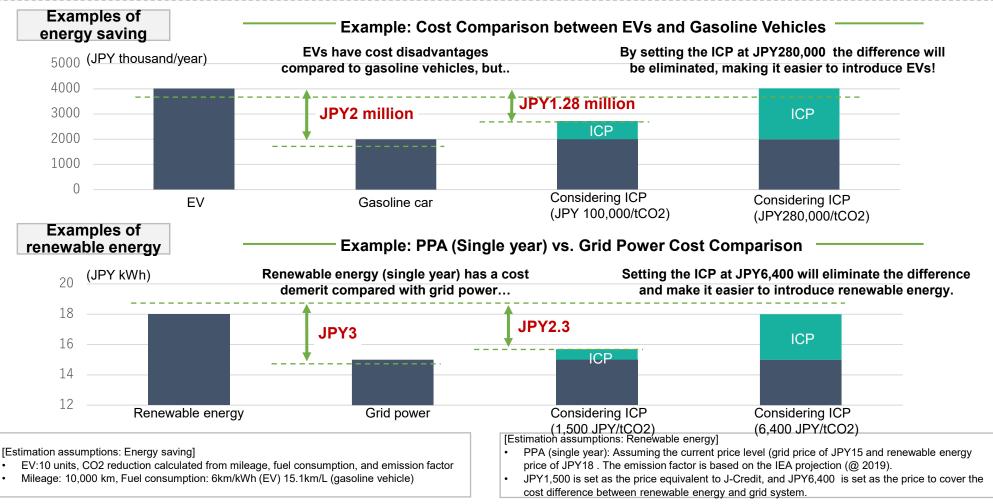
	Carbon price	Business scope	Transaction target	 Categorization for reference	Source
EU-ETS	10,381 (JPY/tCO2) (calculated using 159.71 JPY/€)	EU+EEA EEA (Iceland, Liechtenstein, Norway)	GHG emissions (For large-scale emission facilities such as power plants, oil refineries, iron foundries, and cement plants)	Locations in Europe Appeal to European investors	65€/ tCO2 (end of January 2024) https://tradingeconomics.com/c ommodity/carbon
Green Power certificate	Prices are relative. Private (If 3 (JPY/kWh) is assumed, 6,803 (JPY/tCO2) (3 (JPY/kWh) ÷ 0.000441 = 6,803))	JAPAN	Environmental added value of electricity generated from natural energy	Introduction of renewable energy Achieving RE100 target	Prices are relative and undisclosed (general values from interviews)
Non-fossil certificate	1,325 (JPY/tCO2) (0.6 (JPY/kWh)/0.000453 = 1,325)	JAPAN	Electric power consumption from renewable energy power sources (Non-FIT pricing)	Locations in Japan Introduction of renewable energy Achieving RE100 target	Japan Electric Power Exchange http://www.jepx.org/market/non fossil.html
J-Credit	3,246 (renewable energy) 1,551 (energy saving) (JPY/tCO2)	JAPAN	GHG reductions through introduction of renewable energy and energy-saving equipment	Locations in Japan	J-Credit System (average successful bid price from 14 th round) https://japancredit.go.jp/tender/
Tokyo Cap-and- trade	600 (JPY/tCO2) * As of the end of February 2022	Tokyo	GHG reductions (Only the amount below the obligatory reduction amount can be traded)	Locations in Tokyo	Bureau of Environment, Tokyo Metropolitan Government http://www.kankyo.metro.tokyo. jp/climate/large_scale/trade/

* The Green Power Certification is tentatively set at JPY3/kWh. * The CO2 emission factor for electricity is based on the Ministry of the Environment's "Emission Factor for Each Electricity Utility (for calculating emissions of greenhouse gases by specified emitters) - Results for FY2021 - R5.1.24" using alternative value "0.000441 (t-CO2/kWh)" announced by the Ministry of the Environment and the Ministry of Economy, Trade and Industry, https://ghg-santeikohyo.env.go.jp/calc

2 Consider pricing methodology > 2 See peer price benchmarks

One method is to explore the company's own sense of standards based on the sense of standards set by other companies in the industry

Company	Sector	Country	ICP Type	Price	SBT	Detail
Company A	XX		Shadow price	USD XX	Targets Set	
Company B	XX		Implicit carbon price	USD XX	Targets Set	
Company C	XX		Implicit arbon rice	ISD XX	à gets Set	
Company D	XX		Sht tr w pr	ISD X	Targe Set	
Company E	XX		Shadow price	USD XX	Targets Set	
Company F	XX		Shadow price	USD XX	Targets Set	

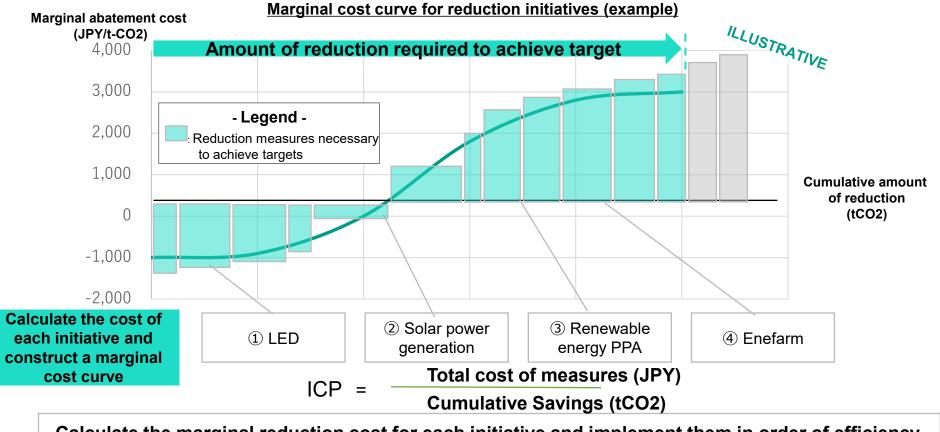

2 Consider pricing methodology > 3 Internal discussion on pricing to encourage decarbonization investments
The cost of reducing carbon emissions in-house can be calculated and used to determine the price level

Calculate ICP prices that may have influenced past decisions

Pricing

Application

 Calculate the ICP price at which investment decision-making will be reversed for the measure you want to invest in, and encourage investment.


Source: Calculated based on various public information provided by METI, NEDO, Keiyo Gas, etc.

Pricing

Application

There is also a method of calculating the ICP price from the total cost of measures and the cumulative reduction (tCO2), after identifying the company's decarbonization initiatives (introduction of LED, solar power, renewable energy, etc.)

- In order to achieve the CO2 reduction target set by the company, the ICP price can be calculated from the total cost of initiatives and the cumulative reduction amount (tCO2) after identifying the company's decarbonization initiatives (introduction of LED, solar power, renewable energy, etc.).
- This makes it possible to shift from high cost-to-effective decarbonization initiatives to more efficient ones to achieve targets.

Calculate the marginal reduction cost for each initiative and implement them in order of efficiency.

3 Determine degree of internal agreement

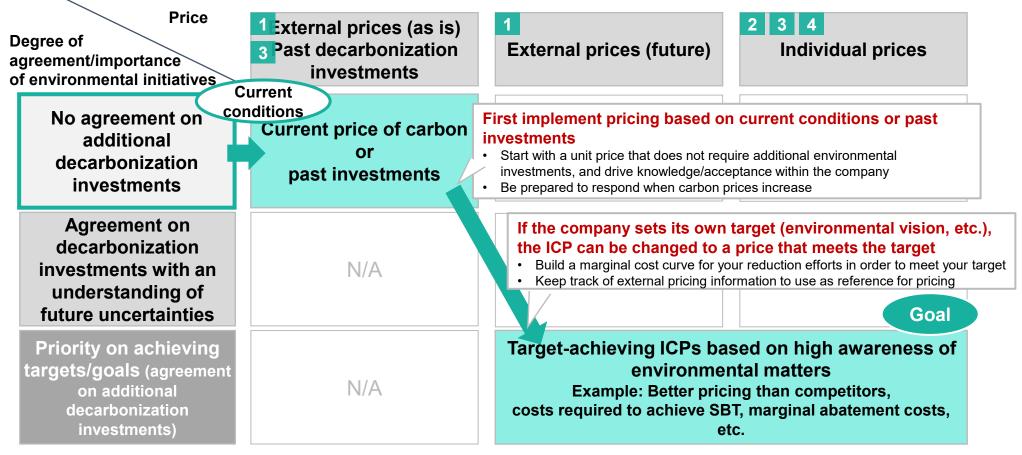
Assess the degree of agreement on environmental initiatives and select the pricing method that best suits your company

 The degree of agreement on environmental measures within companies is classified into "no agreement on additional decarbonization investment," "agreement with an understanding of future uncertainties," and "priority on achieving targets/goals"

 As the type of price that can be set varies depending on the degree of agreement within the company, identify the degree of agreement within your company and choose a method that is consistent with the company's objectives and policies

Pricing method

Degree of Price agreement/importance of environmental initiatives	 External prices (as-is) Past decarbonization investments 	1 External prices (future)	2 3 4 Individual prices
No agreement on additional decarbonization investments	Cost-Effective ICPs for decarbonization investments Example: Current price of carbon	Losses occur when carbon prices do not rise due to future price uncertainties	Different from market price, independent price cannot be explained with economic rationality
Agreement on decarbonization investments with an understanding of future uncertainties		ICP for long-term profitability, such as R&D, can be used. Example: IEA future prices	X
Priority on achieving targets/goals (agreement on additional decarbonization investments)		Target-achieving ICPs bas environmen Example: Better prici costs required to achieve SBT,	ntal matters ng than competitors,


3 Determine degree of internal agreement

Assess the degree of agreement within the company and select the pricing method that best suits your company

• Many companies have yet to agree on additional decarbonization investments

For such companies, it is possible to set the ICP price based on current conditions and past investment amounts
 ⇒ After setting the climate-change targets of your company, work towards changing the prices as needed to
 align with targets

Pricing method

Table of contents

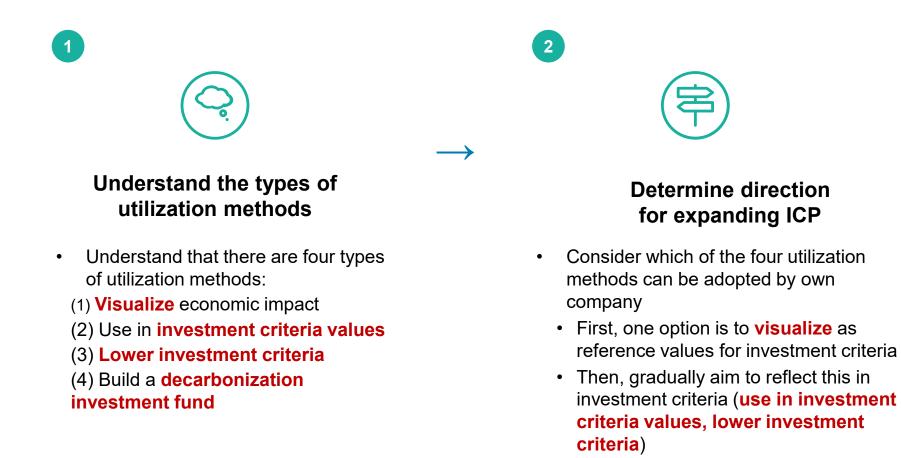
Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

3-4-2. Goal setting	

Appendix

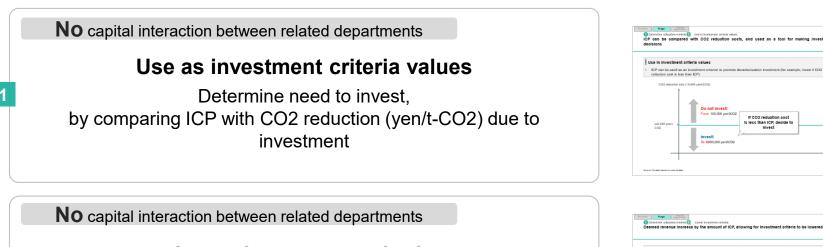
_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-189 1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP 2-3-2. Consideration (1) : Consideration of ICP price	2-55 2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-59 2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-00 2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application and	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	tion
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re-	
information 2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-97 2-111
2-4-2. Examples of advanced ICP implementation in Japan and overseas 2-4-3. List of companies that have introduced ICP in Japan	2-111 2-136


Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) of Model Draiget 04

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

2 Utilization method

Promote utilization method process in two stages

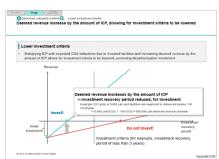

 Finally, expand into a decarbonization investment fund, and promote company-wide decarbonization

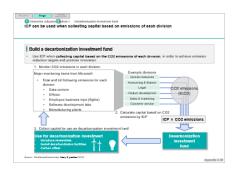
2

3

1 Understand the types of utilization methods

Utilization methods are classified into three categories, depending on whether there are capital interactions between related departments

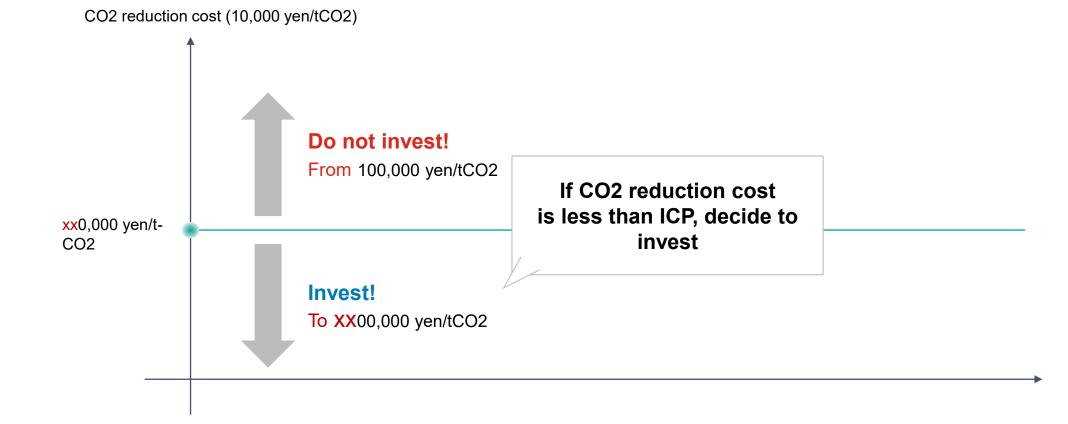

Lower investment criteria


Lower investment criteria, by handling value calculated from "ICP × CP2 reduction" as "deemed revenue"

Capital interaction between related departments: Yes

Build a decarbonization investment fund

Collect capital from each division, based on "ICP × division emissions." Use collected capital to form a fund used for decarbonization investment.

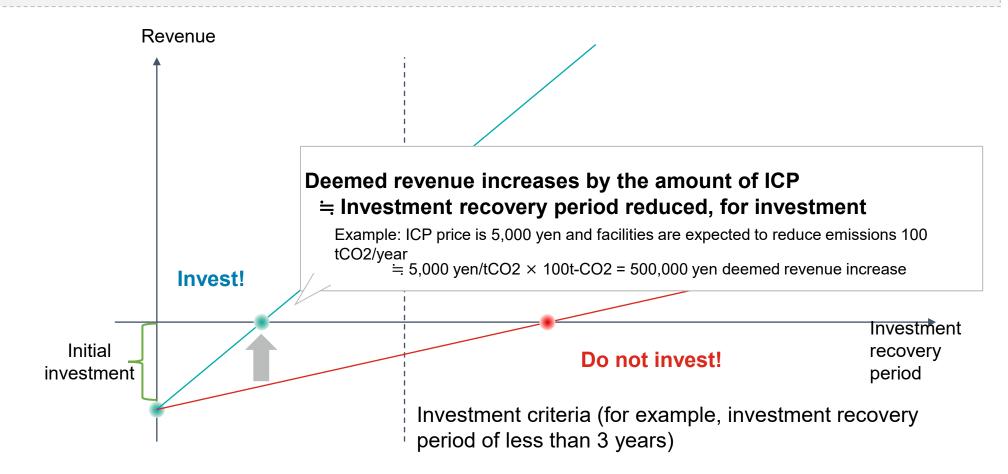


1 Determine utilization method 1 Use in investment criteria values

ICP can be compared with CO2 reduction costs, and used as a tool for making investment decisions

Use in investment criteria values

ICP can be used as an investment criterion to promote decarbonization investment (for example, invest if CO2 reduction cost is less than ICP)


1 Determine utilization method 2

Lower investment criteria

Deemed revenue increase by the amount of ICP, allowing for investment criteria to be lowered

Lower investment criteria

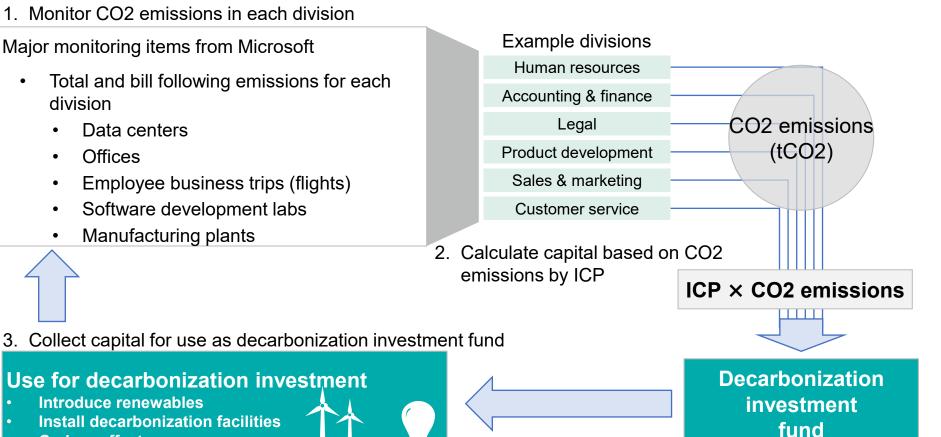
 Multiplying ICP with expected CO2 reductions due to invested facilities and increasing deemed revenue by the amount of ICP allows for investment criteria to be lowered, promoting decarbonization investment

Set price

Usage

1 Determine utilization 3 ethod > Decarbonization investment fund

ICP can be used when collecting capital based on emissions of each division


Build a decarbonization investment fund

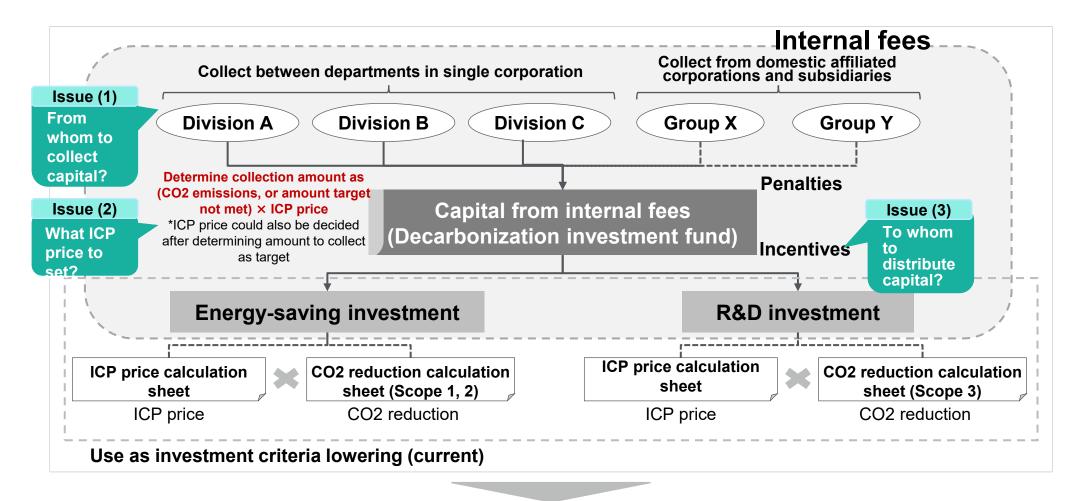
Use ICP when collecting capital based on the CO2 emissions of each division, in order to achieve emission reduction targets and promote innovation

1. Monitor CO2 emissions in each division

Major monitoring items from Microsoft

- Total and bill following emissions for each ٠ division
 - Data centers
 - Offices
 - Employee business trips (flights)
 - Software development labs
 - Manufacturing plants

Install decarbonization facilities


Use for decarbonization investment

1 Determine utilization method 3

Decarbonization investment fund > Key issues during system design

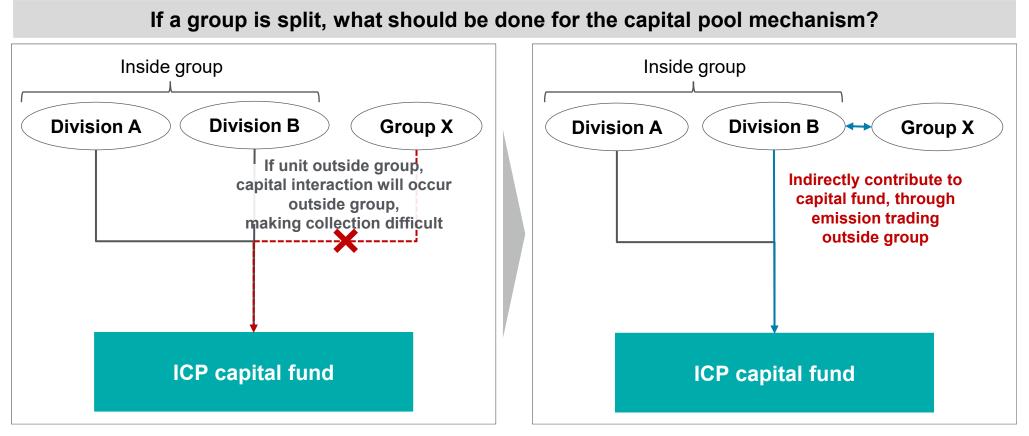
When forming a decarbonization investment fund, consider (1) collection method, (2) price setting, and (3) distribution method

Issue (1)	Collection method: From whom to collect capital?
Issue (2)	ICP price setting: What ICP price to set?
Issue (3)	Distribution method: To whom to distribute capital?

Usage

1 Determine utilization method > 3 Decarbonization investment fund > Detailed explanation of key issues during system design

Organize issues and solutions for system design.


The department in charge of overall management and whether the system needs to be built must also be considered

ltem	Key issues to consider
Internal fee usage	 Usage of internal fee capital Assume two patterns, after setting as capital for Scope 1/2/3 emission reduction Collect all investments using ICP as internal fees Partially cover as penalties/incentives
Issue (1) From whom to collect capital?	 From whom to collect capital? Collect between departments in single corporation Collect from domestic affiliated corporations and subsidiaries How to process when collecting? Reflect through reducing budget Reflect by reducing division evaluation Collect actual department capital How to determine amount to collect? Determine amount by multiplying CO2 emission by ICP price Determine amount by multiplying amount target not met by ICP price
Issue (2) What ICP price to set?	 What ICP price to set? Set ICP price that satisfies collection level considered for Issue (1) Does same ICP price as investment decision making satisfy collection level? Must a new ICP price be set for internal fees?
Issue (3) To whom to distribute capital?	 To whom to distribute capital? How to process during distribution? Reflect through increasing budget Reflect through increases during division end of term evaluation Distribute actual department capital

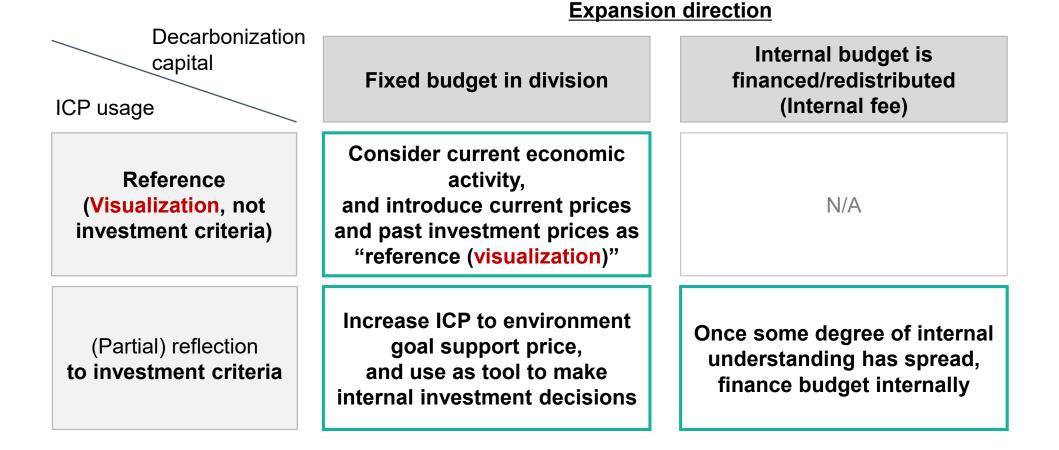
1 Determine utilization method > 3 Decarbonization investment fund > Collection between groups

Organize issues and solutions for system design.

The department in charge of overall management and whether the system needs to be built must also be considered

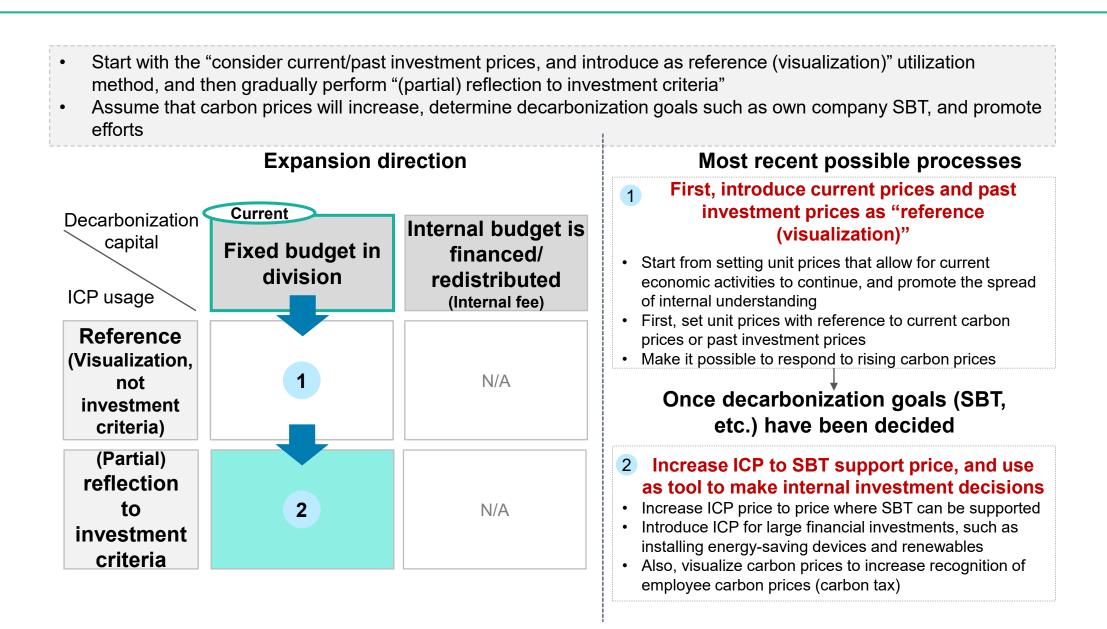
Instead of internal fees^{*1} (capital interactions), another option is to use internal trade^{*2} (CO2 emission interaction) to implement emission trading outside the group.

In this case, new mechanisms and internal rules would need to be established for emissions outside the group


*1: Internal fee (internal carbon charge): Creating an ICP capital fund to help reduce Scope 1/2 within the group, and collecting/managing capital

*2: Internal trade (internal emissions trading): Trading emissions between groups

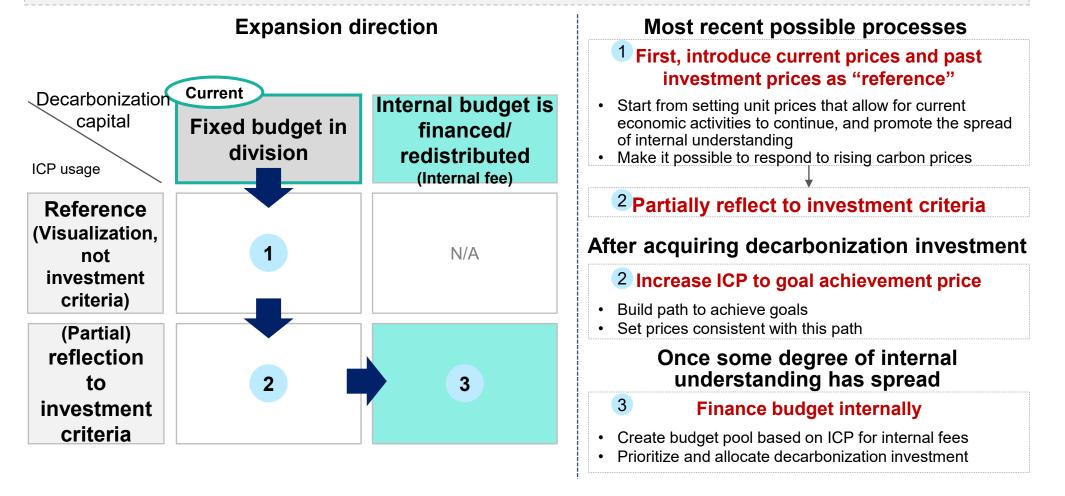
2 Direction of assumed expansion


Organize direction for expansion based on "reflection to investment criteria" and "whether there is capital interaction"

- Organize ICP usage based on "reference (visualization, not investment criteria)" and "(partial) reflection to investment criteria"
- Organize direction of expansion based on whether decarbonization capital is "fixed budget in division" or "internal budget is financed/redistributed"

2 Determine direction for expanding ICP (1/2)

Start with use as reference, and then reflect in investment criteria



2 Determine direction for expanding ICP (2/2)

Usage

If deemed effective for own company, introducing internal fees can have an effect that makes up for or even exceeds reflection to investment criteria

- Start from "considering current/past investment prices, and introducing as reference (visualization)." If deemed effective for own company, aim to introduce internal fees as a "framework for collecting capital from each division and providing capital for energy-saving and R&D investment"
- Actions such as obtaining additional investment in decarbonization and promoting internal understanding will likely be required

Table of contents

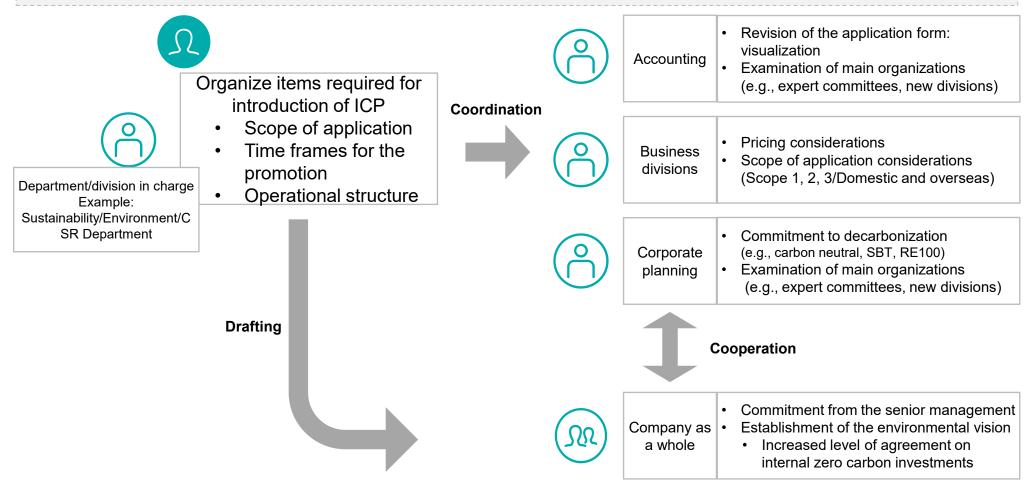
Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

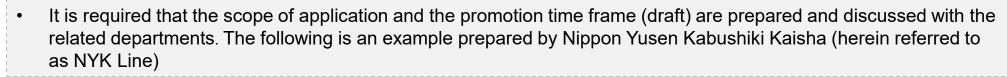
_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	tional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-189 1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in	
carbon pricing)	ternar
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method 2-2-3. Consideration of internal structure and future initiatives	2-35 2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2): Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduction targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	2-07
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	ference
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

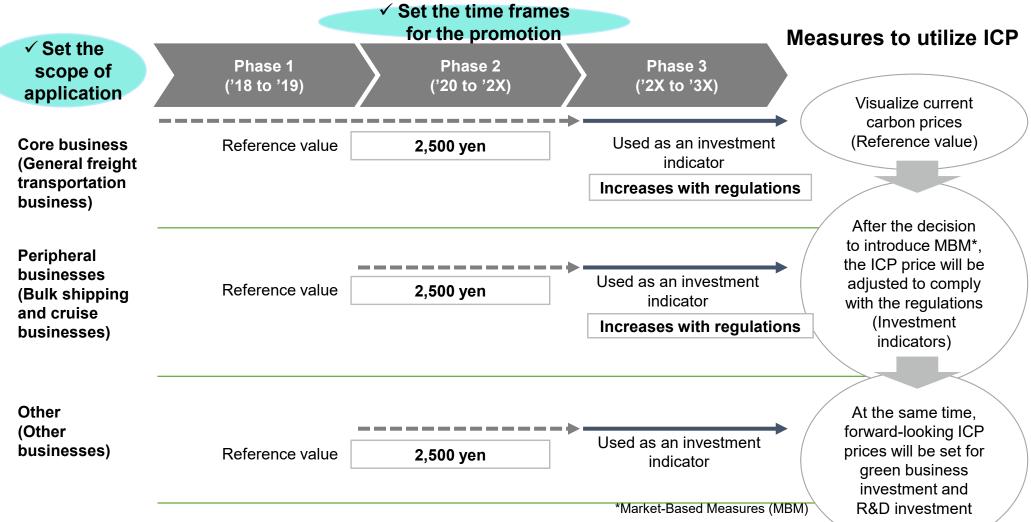
Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

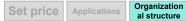

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Organizational structure

Department in charge organizes the items necessary for the introduction of ICP and coordinates and collaborates with related departments

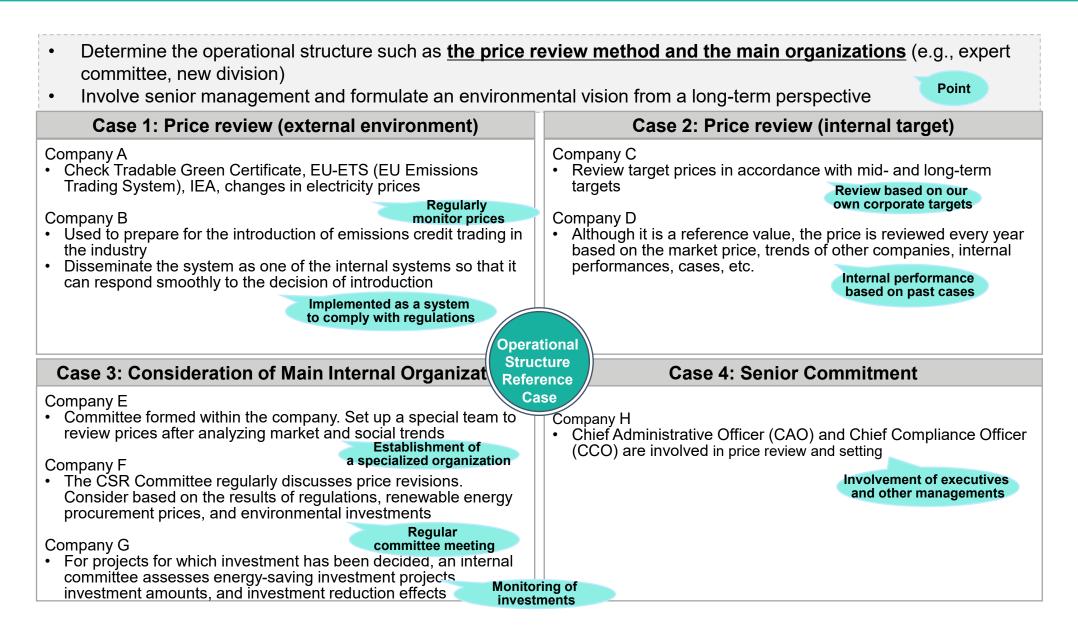

- Departments in charge (e.g., Sustainability/Environment/CSR Department) organize items necessary for the introduction of ICP
- Coordinate with related departments and develop an environmental vision in parallel





Future initiatives: Example of NYK Line

Prepare the scope of application and promotion time frame (draft)



Examples of organizational structure determination

Consider pricing review methods and organizational structure

Summary: Points that form the premise of the set price, methods of use, and organizational structure

Introduce ICP after clarifying the status of agreement, introductory purposes, and the future image within the company

Point	
Consideration of the set price	 Consider the price according to the introductory purposes First, understand the types of prices and how to set them Decide which information to refer to, considering the difficulty and effectiveness of the setting. Discuss with business divisions and other departments/divisions to confirm the level of agreement on decarbonization investment within the company
Consideration of methods of use	 Present a realistic development direction based on the level of understanding within the company (whether the investment standards are immediately applicable or not) Discuss with the sustainability, environment, and business divisions, etc. for what purpose the ICP should be introduced in the company Do we just need to understand the impact of future carbon prices, or do we need to include investment standards?
Review of organizational structures and future initiatives	 The promotion with a time frame which is in line with the actual situation of the company is important Decide which organization will be the main body: new or existing internal departments/divisions, etc. Discuss the scope of application with the organizations and departments/divisions in charge. Determine the time frame for promotion Request to obtain commitment from management Draft long-term environmental vision and internal targets

(Reference) Purpose and scope of application of the ICP

When using ICP, the purpose, scope of the application, and business application (how they are applied to business decision-making) will be the keys

	There are three main purp	oses for implementing the ICP
	Purpose	Potential goals/outcomes
		Assess risk exposure
	Tool to assess and manage carbon-related risks	 Inform strategic response & future-proof assets and investments against regulatory risk (ETS, carbon tax). (Including investment in new technologies or energy efficiency to decrease costs.)
		 Demonstrate management of risk to shareholders
Purpose		 Reveal cost-cutting and resiliency investment opportunities throughout value chain in the transition to a low-carbon economy
	Tool to identify carbon-	Change employee and supplier behavior
	related opportunities	 Discover new markets and revenue opportunities
		Influence R&D investment decisions
		 Align investment strategy and business with the Paris Agreement
	Transition tool for corporate behavior	 Accelerate reduction of GHG emissions and drive investment in energy efficiency initiatives, renewable energy procurement, and R&D of low-carbon products/services
		 Generate revenue to reinvest in low-carbon activities
The scope of GHG emissions affects the relevant decision making		
	GHG emissions	Examples of relevant decisions
Scope of	Scope 1	(Facility related) Investment and production decisions
application	Scope 2	Energy purchasing decisions
	Scope 3 (Upstream)	Materials sourcing and procurement decisions
	Scope 3 (Downstream)	R&D decisions for innovative products for the current/future market
Business	How the ICP are applied to business decisions (e.g., capital expenditure decisions, operational decisions, procurement decisions)	
application	Level of impact on the d	ecision-making process (= to what extent does it enforce the use of ICP prices)

Table of contents

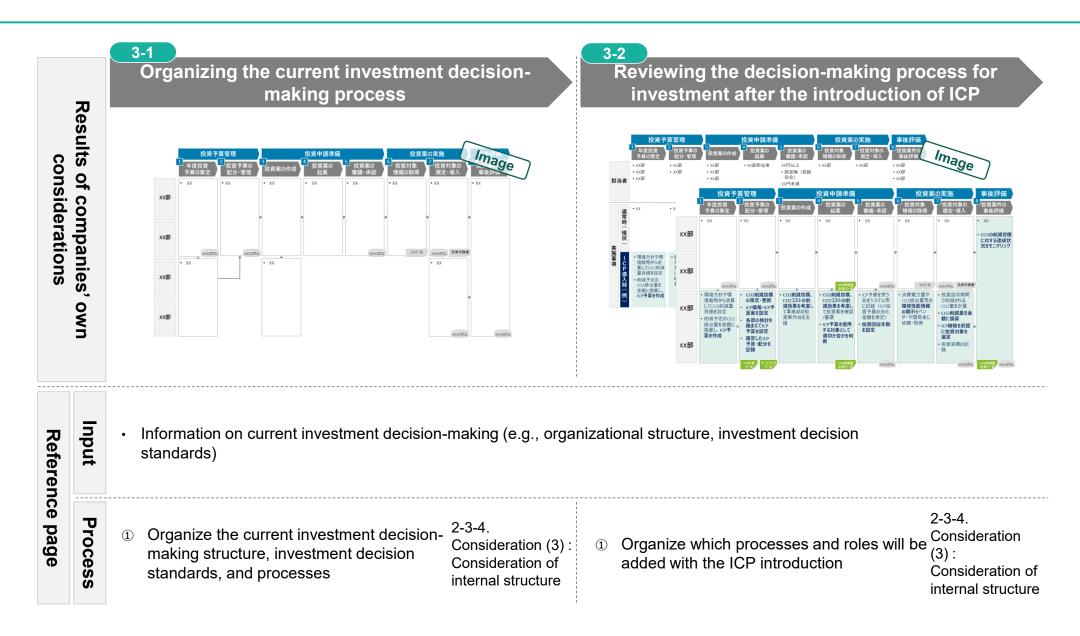
Main Part

_	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and natur 1-2-1. Climate change and corporate management	1-1 e 1-5
1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execu	tion
	2-91
Chapter 3 Preparing for nature-related financial disclosure)
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-189 1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in	
carbon pricing)	ternar
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method 2-2-3. Consideration of internal structure and future initiatives	2-35 2-47
2-2-3. Consideration of internal structure and ruture initiatives 2-3. Practical version of internal carbon pricing	2-47
· · · · ·	2-55
2-3-1. Introduction : Consideration of the purpose of introducing ICP 2-3-2. Consideration (1) : Consideration of ICP price	2-55 2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit on ICP	2-90
-	2-90
2-4. Reference information on internal carbon pricing 2-4-1. Frequently asked questions and example answers, glossary, and re	forence
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136
Chanter 2 Nature related financial disclosure model (TNFD conceris analys	in and

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) 3-1 Outline of Model Project


3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

ructure Applicable larg

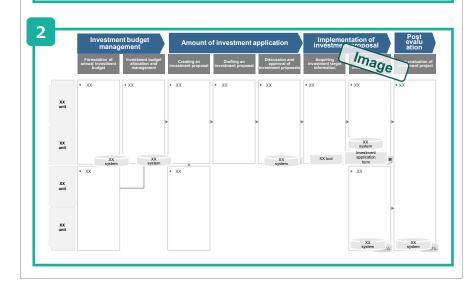
and Budget control a

Steps to consider application and decision-making process

Organize and review the current investment decision-making process and the decision-making process in ICP introduction

Application and decisionmaking process Organ

Explanation on organizing the current investment decision-making process


Organize the current investment decision-making process and identify the departments and roles involved, as a prerequisite information for considering the process in ICP introduction

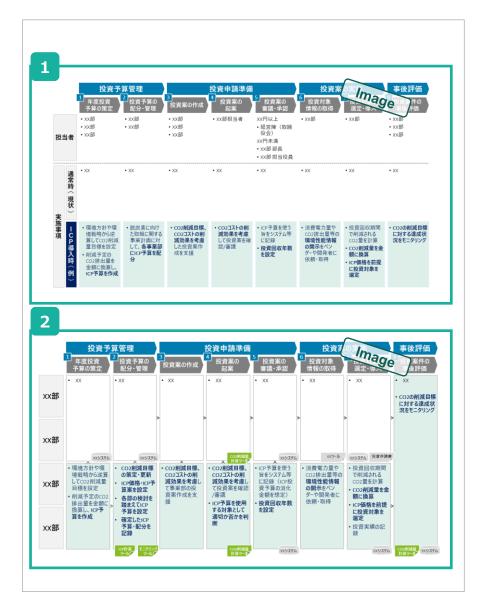
1 Organize the current investment decision-making process, including the departments in charge, their roles, and standards. When the process differs depending on the investment target or department, it is advisable to organize the process for each. (If necessary, conduct interviews with the departments in charge.)

(Examples of perspectives in the organization)

- Who decides/allocates the annual investment amount and budget, and how?
- Who applies for the investment?
- Who has the authority to confirm/approve/decide on investment requests?
- Who purchases the investments?
- Who manages the data on investment applications/approvals/facility and product information?
- 2 Based on the above, organize the departments in charge, roles, and investment decision standards in the current decision-making process using process charts, etc.

Company	Investment target	Department	Responsibility	
XXHD	Ххх	XX Department	Ххх	Xxx
	Xxx	XX Department	Ххх	Yyy
ххх	Ххх	XX Department	Xxx	Ххх
	Ххх	XX Department	Ххх	Zzz
xxx	Ххх	XX Department	Ххх	Ххх
xxx	Ххх	XX Department	Xxx	Ххх
xxx	Xxx	XX Department	Xxx	Xxx

3-2 Explanation on the review of the investment decision-making process after the introduction of ICP


Clarify roles, processes, and rules that will need to be added/changed by introducing ICP

Organize roles, processes, and rules that will need to be added/changed by introducing ICP. Also consider whether it can be applied with existing roles, processes, and rules.

Application and decisionmaking process

(Example of items to consider)

- Will the budget decision makers change?
- Will the applicants for investments and the details of their applications be changed?
- Will the authority to confirm/approve/decide on investment requests be changed?
- Will the person who manages investment application/approval/equipment/product information data change?
- Will the introduction of ICP require changes in internal rules?
- 2 Organize the above considerations in a process chart, etc.

Table of contents

Main Part

_	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and natur 1-2-1. Climate change and corporate management	1-1 e 1-5
1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execu	tion
	2-91
Chapter 3 Preparing for nature-related financial disclosure)
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-189 1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in	
carbon pricing)	ternar
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP 2-3-2. Consideration (1) : Consideration of ICP price	2-55 2-59
2-3-3. Consideration (1): Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduced	ction
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	0.00
on ICP	2-90
2-4. Reference information on internal carbon pricing	_
2-4-1. Frequently asked questions and example answers, glossary, and re information	terence 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136
Chanter 2 Nature related financial disclosure model (TNFD concerie analys	in and

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) 3-1 Outline of Model Project

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Chapter 3 fleshes out the issues discussed in Chapter 2 and discusses the scope of application, operational structures/methods of ICP

		Step	Key issues	Keywords
	1	Consideration of the introductory purposes	• What is the purpose of introducing ICP on the basis of internal emissions?	Current status of internal emissionsEmission reduction target
How to set the ICP	2	Consideration of the set price	 Which of the four methods (external pricing, internal discussions, etc.) should be used? What is the use of internal ICP, and is it used as an investment standard? 	 External prices Peer companies' price benchmark Internal discussion on decarbonizing prices Mathematical analysis of CO2 reduction targets
	3	Consideration of application purpose and decision- making processes	 What is the use of the ICP and is it used as an investment standard? First of all, in cases where reference values (visualization) for investment are used, which document (e.g., request for investment decision) should be included as reference values? 	 Visualized as a reference value for investment Use in investment indexes (investment standard value) Use in investment indexes (lowering of investment standard) Internal fee (recovery of funds based on emissions)
How and to what extent should the ICP	4	Consideration of organizational structure	How will the ICP be promoted?Which departments/divisions are involved in the promotion?	 Use in existing departments/divisions Launching of new departments/divisions
be applied?	5	Consideration of scope of applications and applicable companies	 Among Scope 1 (investment in energy-saving), Scope 2 (investment in renewable energy), and Scope 3 (e.g., procurement of raw materials, R&D, M&A), what is the scope to which the ICP applies? (In case of holdings) How far should ICP be introduced in domestic, overseas, and group companies? 	 Scope 1 (energy-saving), Scope 2 (renewable energy), Scope 3 (procurement of raw materials, R&D), etc. Domestic head office, domestic group companies, overseas sites/subsidiaries
How to	6	Consideration of linkage between reduction targets and investments	 Is there currently a quota for investment and is the amount of decarbonization investment linked to the company's climate objectives (e.g., the 2050 net zero)? 	 Set the amount of investment for decarbonization linked to CO2 reduction targets (Not set)
How to manage investments and budgets regarding ICP	7	Consideration of budget control and budget cap	 (When ICP are reflected in investment standards) How will the budget be managed?/Which departments/divisions will be responsible for budgetary controls and the accumulation of ICP-related investment information (e.g., which facilities, investment amounts)? (When ICP are reflected in investment standards) Should budget cap be implemented?/If so, how? (Set according to the annual CO2 reduction target) 	 Budget control/business divisions apply for ICP budget at corporate headquarters/Apply for ICP budget and allocate budget to business divisions Calculate the budget based on the results of the previous year's ICP utilization and the annual CO2 reduction target

Note: Budget control and budget cap will be considered from the stage of reflecting the ICP to the investment standards. No need to consider when using as visual control (visualization) (reference value)

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and	1-5 1-16
TNFD recommendations	1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

_	page	
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international) and reference parameters and tools		
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1	
1-2-1. List of parameters	1-87	
1-2-2. Physical risk tools	1-189	
1-2-3. List of TCFD related literature	1-216	
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ernal	
2-1. Definition of internal carbon pricing	2-1	
2-2. Theoretical version of internal carbon pricing	2-20	
2-2-1. Consideration of price setting	2-23	
2-2-2. Consideration of utilizing method	2-35	
2-2-3. Consideration of internal structure and future initiatives	2-47	
2-3. Practical version of internal carbon pricing	2-53	
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55	
2-3-2. Consideration (1) : Consideration of ICP price	2-59	
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66	
2-3-4. Consideration (3) : Consideration of internal structure	2-70	
2-3-5. Consideration (4) : Consideration of the scope of ICP application and		
applicable companies	2-79	
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc		
targets and investment 2-3-7. Consideration (6) : Consideration of budget management and limit	2-87	
on ICP	2-90	
2-4. Reference information on internal carbon pricing	2 00	
2-4-1. Frequently asked questions and example answers, glossary, and ref information	ference 2-97	
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111	
2-4-3. List of companies that have introduced ICP in Japan	2-136	

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Reduction targets and Budget control and

Introductory purposes

Set price

Clarify the purpose of introducing ICP and check the status of internal emissions

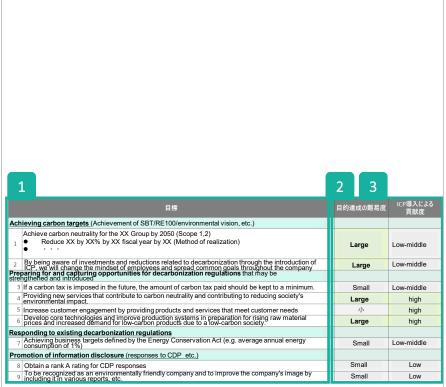
	Ŧ	1-1 rting out the purpose of introducing l	СР	
	Results	目標	Difficulty of achieving goals	Contribution by introducing ICP
	E	Achieving carbon targets (Achievement of SBT/RE100/environmental vision, etc.)		
considerations	of	Achieve carbon neutrality for the XX Group by 2050 (Scope 1,2) Reduce XX by XX% by XX fiscal year by XX (Method of realization)	Large	Low
ide	companies	2 By being aware of investments and reductions related to decarbonization through the introduction of ICP, we will change the mindset of employees and spread common goals throughout the company.	Large	Low-middle
Ť	В	Preparing for and capturing opportunities for decarbonization regulations that may be strengthened and introduced		
at a	D D	3 If a carbon tax is imposed in the future, the amount of carbon tax paid should be kept to a minimum.	Small	Low-middle
ō	UE	4 Providing new services that contribute to carbon neutrality and contributing to reducing society's environmental impact.	Large	high
Ņ	ē	5 Increase customer engagement by providing products and services that meet customer needs	Small	high
0)	٥,	6 Develop core technologies and improve production systems in preparation for rising raw material prices and increased demand for low-carbon products due to a low-carbon society.	Large	high
	0	Responding to existing decarbonization regulations		
	own	7 Achieving business targets defined by the Energy Conservation Act (e.g. average annual energy consumption of 1%)	Small	Low-middle
	n	Promotion of information disclosure (responses to CDP etc.)		-
		8 Obtain a rank A rating for CDP responses.hfs6	Small	Low
		9 To be recognized as an environmentally friendly company and to improve the company's image by including it in various reports, etc.	Small	Low
	Input	 Company's own decarbonization targets (long-term targets, reduction methods) 		
	Process	 Organization and clarification of the purposes of introducing ICP Classification of degree of difficulty in achieving objectives and degree of contribution ICP 	on through	introductic

Application and decision-Organizat Applicable targets

gets and Budget

1-1 Explanation on organizing the ICP introductory purposes

Clarify the purpose of introducing the ICP to make it more effective


Organize purposes related to the introduction of ICP as a list

(Examples of objectives)

- Achievement of decarbonization targets (e.g., long-term targets, reduction methods)
- Preparing for and seizing opportunities for decarbonization regulations that may be strengthened and introduced in the future
- Compliance with existing decarbonization regulations (e.g., compliance with the law concerning energy conservation)
- Promotion of information disclosure (e.g., CDP responses, TCFD responses)
- 2 The degree of difficulty in achieving the objectives and the degree of contribution from the introduction of ICP are classified as "Small" to "Large". The priorities for the objectives of the introduction of ICP are ranked based on these classifications
 - Degree of difficulty in achieving the objective: Classify the degree of difficulty in achieving the objective itself (e.g., we classify the decarbonization target as "Large" because it takes a long time to achieve the target)
 - Degree of contribution by introduction of ICP: Classification of whether the introduction of ICP contributes to the achievement of objectives (e.g., classification will be "Large" if the introduction of ICP can address future regulatory costs)

3 Check the status of CO2 emissions at the company (Details to be discussed at 4-1)

 Regarding the emissions in Scope 1 and 2 (including Scope 3 if possible), confirm the amount and breakdown of emissions, and identify the scope (business/facility) that is a hurdle to emission reduction

(Reference) Hearing regarding the introduction of ICP

ICP introduction is linked to decarbonization targets and considered in investment planning. When promoting environment-related targets and environmental investment, some companies are considering its introduction to raise awareness on CO2 reduction measures within the company

What are the purposes and backgrounds of companies that have introduced ICP? To foster awareness of CO2 throughout the company and promote environment-related targets with the primary goal of reducing GHG emissions. Achievement One of the ways to promote decarbonization efforts in the company. of the Person in charge decarbonizati There is a growing momentum for carbon neutrality, and the ICP will be introduced for companyof Sustainability/ Environment on target wide and group-wide efforts, and we believe that it will support internal awareness and specific Division, etc. initiatives on decarbonization targets. In order to promote emissions reduction, it is linked to the GHG reduction targets for the entire **Preparing for** company and the entire Group for 2030/2050. To achieve these targets, the ICP will be used to and seizing promote investment in energy conservation, while at the same time supporting business growth. opportunities To encourage environmental investment by responding in advance to expected border carbon tax Person in charge of Sustainability/ for which may be imposed by each country. decarbonizati Environment Use ICP to assess the economic rationality of business operations in the event that carbon on regulations Division, etc. regulations become stricter, based on fuel price forecasts and regulatory risks. External ESG evaluations change depending on whether the ICP has been introduced. Therefore, Promotion of obtaining external evaluations is one of the reasons for introducing it. information Person in charge of In response to requests from investors and society, ideas on the introduction of ICP were disclosure Sustainability/ presented by management. Environment Division. etc The background of the ICP introduction lies in the response to the CDP. As the management was Responding to familiar with the ICP through the response to the CDP, the introduction of the ICP was started Person in charge the CDP of Sustainability/

amid the background of the popularity.

Environment Division. etc.

Table of contents

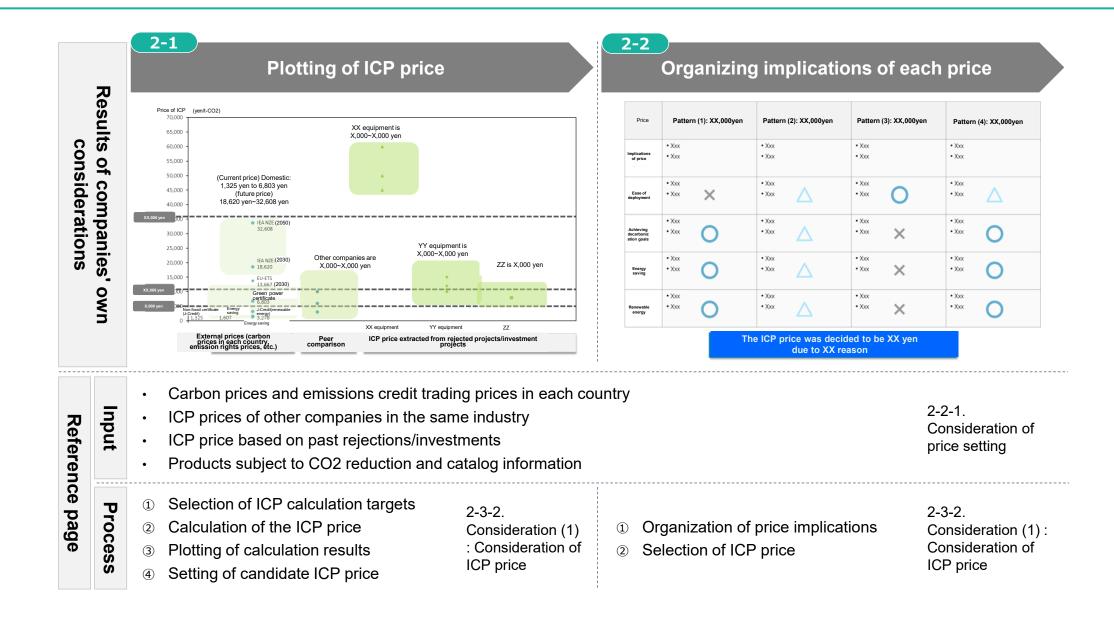
Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

3-4-2. Goal setting	-
5-4-2. Obai setting	

Appendix

_	page	
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international) and reference parameters and tools		
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1	
1-2-1. List of parameters	1-87	
1-2-2. Physical risk tools	1-189	
1-2-3. List of TCFD related literature	1-216	
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal	
2-1. Definition of internal carbon pricing	2-1	
2-2. Theoretical version of internal carbon pricing	2-20	
2-2-1. Consideration of price setting	2-23	
2-2-2. Consideration of utilizing method	2-35	
2-2-3. Consideration of internal structure and future initiatives	2-47	
2-3. Practical version of internal carbon pricing	2-53	
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55	
2-3-2. Consideration (1) : Consideration of ICP price	2-59	
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66 2-70	
2-3-4. Consideration (3) : Consideration of internal structure 2-3-5. Consideration (4) : Consideration of the scope of ICP application an		
applicable companies	2-79	
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	tion	
targets and investment	2-87	
2-3-7. Consideration (6) : Consideration of budget management and limit		
on ICP	2-90	
2-4. Reference information on internal carbon pricing		
2-4-1. Frequently asked questions and example answers, glossary, and re		
information	2-97	
2-4-2. Examples of advanced ICP implementation in Japan and overseas 2-4-3. List of companies that have introduced ICP in Japan	2-111 2-136	
- · · · · · · · · · · · · · · · · · · ·		


Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Introductory purposes	Set price	Application and decision-	Organizational structure	Applicable targets and	Reduction targets and	Budget control and
introductory purposes	Det price	making process		corporate scope	investment linkage	budget cap

Setup price review steps

Plot the ICP price and sort out the pros and cons of each set price

Application and decision-

Applicable targets

Reduction targets and

Budget control and

2-1 Explanation on ICP price plots

Set price

After specifying the targets of calculation, comprehensively g. عن أله expected ICP price along with "external price" and "price of other companies in the same industry"

¹ Select ICP calculation targets

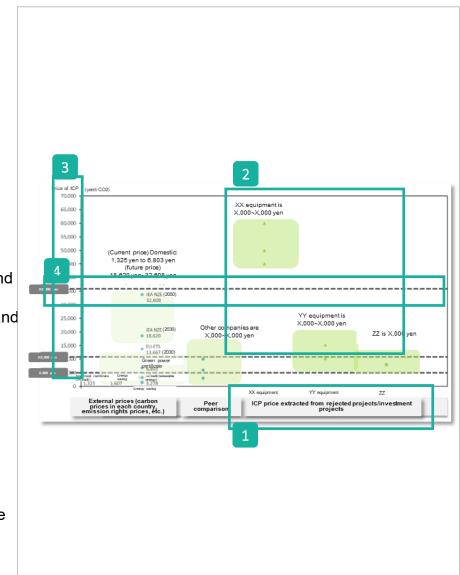
(Examples of targets)

- · Past rejections/investments related to decarbonization
- Planned investments related to decarbonization (e.g., reduction methods in long-term targets)
- Investment in facilities and products that currently emit large amounts of CO2

²Calculate the ICP price for the selected targets

(Examples of calculation)

- In the case of new introduction: ICP price = (Investment amount-cost reduction such as that of electricity)/CO2 reduction amount
- To update from an existing one: ICP price = (Amount differences in investment-reduction in electricity and other costs)/CO2 reduction amount


Note: Information on the latest facilities can be found in product catalogs and <u>LD-Tech product</u> information

³ Plot it on a graph together with external price and price of other companies in the same industry

 The calculation results, including carbon prices and emissions credit trading prices in each country and ICP prices of other companies in the same industry, are plotted on a graph

⁴ Set candidate ICP prices based on plot results

- Based on the plot results, set ICP price candidates so as to broaden the price range as much as possible
- When it is difficult to calculate the price, it is possible to refer to the external price or the price of other companies in the same industry

ing process organizational structure of

and Budget control

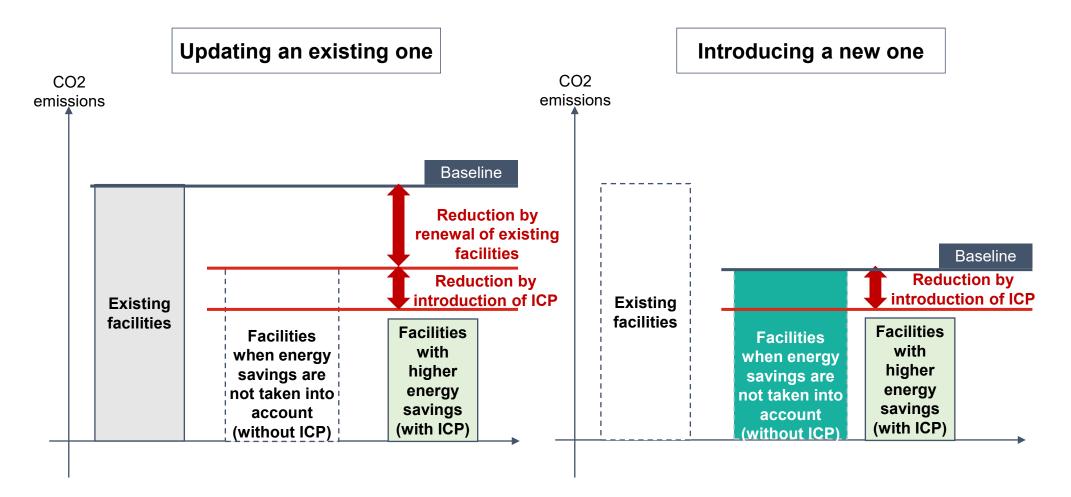
2-2 Explanation on organizing the implications of each price

Set price

Sort out the implications of each price, and set ICP prices that are in line with the purposes of ICP introduction and the level of understanding within the company

Sort out the price implications of candidate ICP prices classified in the previous step

(Examples of perspectives in price considerations)


- Source of the referenced prices and year covered (e.g., emissions trading price in Japan, IEA's projection of carbon price as of 2030)
- Ease of introduction (e.g., the lower the price, the lower the investment and the easier the introduction)
- · Contribution to achieving decarbonization targets
- Time frame of investment targets (e.g., for investments that have a long useful life or are related to R&D, etc., future prices should also be considered)
- 2 Select ICP price based on price implications. To select the price, the level of internal understanding and commitment to decarbonization investments should also be taken into account.
 - Level of internal understanding of ICP introduction When the internal understanding of ICP is immature, refer to external prices first
 - Level of internal commitment to investments that contribute to decarbonization

When there is a high awareness of achieving decarbonization targets, some higher prices can be set

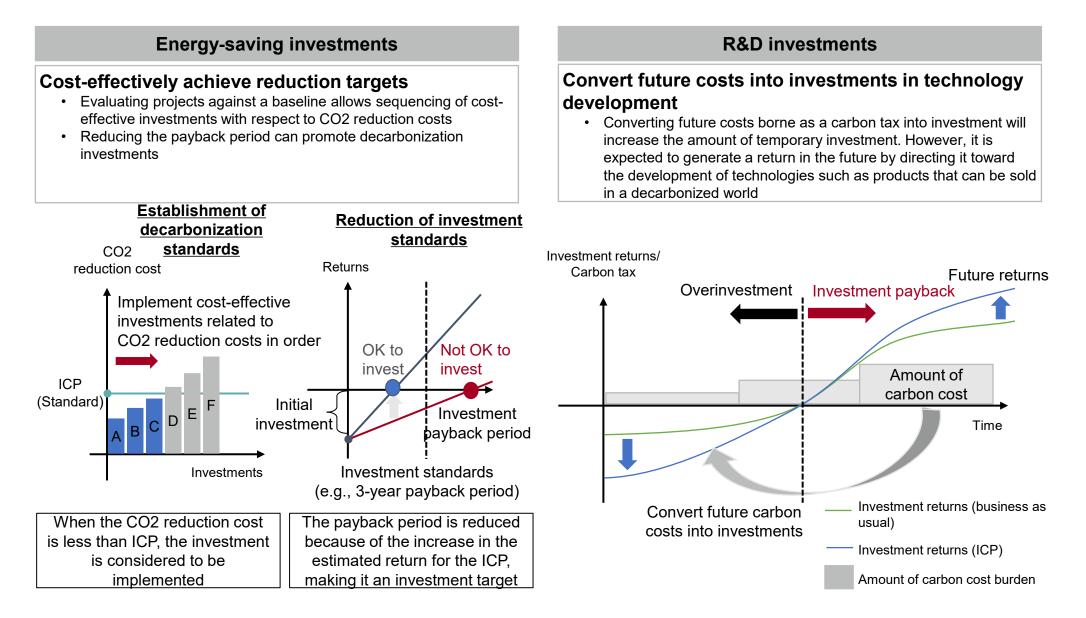
 Multiple pricing for each investment objectives is also an option (e.g., separate pricing for energy conservation investment and R&D investment)

1				
_		○ : Benefits are great	\triangle : Benefits are not that g	reat 🛛 🛛 : Benefits are small
Price	Pattern (1): XX,000yen	Pattern (2): XX,000yen	Pattern (3): XX,000yen	Pattern (4): XX,000yen
Implicationa of price	• XX	• XX	• XX	• XX
	2 ×	• XX	• xx	
of price	2			• XX
of price	2 ×	•xx 🛆	• XX O	• xxx

Calculate reductions by using the existing facilities as the baseline when they are upgraded from existing facilities, or by using the normal facilities without energy conservation as the baseline when the facilities are newly introduced

Using the <u>existing facilities</u> as the baseline, calculate the difference in <u>efficiency value</u> between <u>existing facilities</u> and <u>installed</u> <u>facilities</u>

Set price


Using the <u>normal facilities</u> as the baseline, calculate the difference in <u>efficiency value</u> between <u>normal facilities</u> and <u>the latest</u> <u>facilities</u> Set price

icture corpora

and Budget control a

2-2 2 (Reference) Effects of ICP utilization on decarbonization investments

Energy-saving investments that cost-effectively reduce CO2 emissions can be implemented in the short term, while R&D investments that maximize profits can be promoted in the medium to long term

Organizational structure Applicable targe

and Reduction targets and

Budget control and budget cap

(Reference) Hearing on ICP set price

Set price

Although there are various methods for setting ICP prices, many companies use IEA prices as a reference. In addition, some companies changed prices to speed up the process of meeting emission reduction targets.

		— How the price level was set
Referenced current prices of IEA	Transportation	• Since there are multiple methods for setting the ICP price level, there was considerable debate as to which method to adopt. While the price would be higher in the level which the difference with zero-emission fuels could be filled, the IEA's figures were adopted because of the importance of using them for investment at a realistic level.
Referenced future prices of IEA	Consumer products manufacturer	 The carbon price is referenced to the 2035 level, not the IEA's current one, because we wanted to take a step ahead and show a steady path toward meeting the 2030 emission target. ICP price levels are unified globally and changed from yen to dollars due to the impact of exchange rates.
Referenced relevant taxes in Japan and other countries	Forestry	 In addition to Japan's gasoline tax and other taxation systems related to carbon emissions, the carbon tax price in South Korea and other taxation systems were used as a guide for setting the price. The price will first be set based on such external information, and then fine-tuned to a price level at which renewable energy facilities can be introduced.
Referenced both external and internal prices	Manufacturing	• The price level was set based on the projected carbon tax and other carbon pricing as of 2030, as well as the results of the calculation of the investment and reduction effect required by the company to reduce emissions.
Changed price level	Consumer products manufacturer	 Several years ago, when we first introduced ICP, we set the price at X,XXX yen/ton, but in recent years we have raised the price. The company uses ICP mainly when making capital investment decisions, but has found it difficult to achieve Scope 1 and 2, which it sets for itself, at the current price levels. The price was raised to a level that meets the Scope 1 and 2 reduction targets.

Table of contents

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and executive 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

3-4-2. Goal setting	
---------------------	--

Appendix

	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	tional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters 1-2-2. Physical risk tools	1-87 1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method 2-2-3. Consideration of internal structure and future initiatives	2-35 2-47
	2-47 2-53
2-3. Practical version of internal carbon pricing	2-55 2-55
2-3-1. Introduction : Consideration of the purpose of introducing ICP 2-3-2. Consideration (1) : Consideration of ICP price	2-55 2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit on ICP	2-90
	2-90
2-4. Reference information on internal carbon pricing 2-4-1. Frequently asked questions and example answers, glossary, and re	ference
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

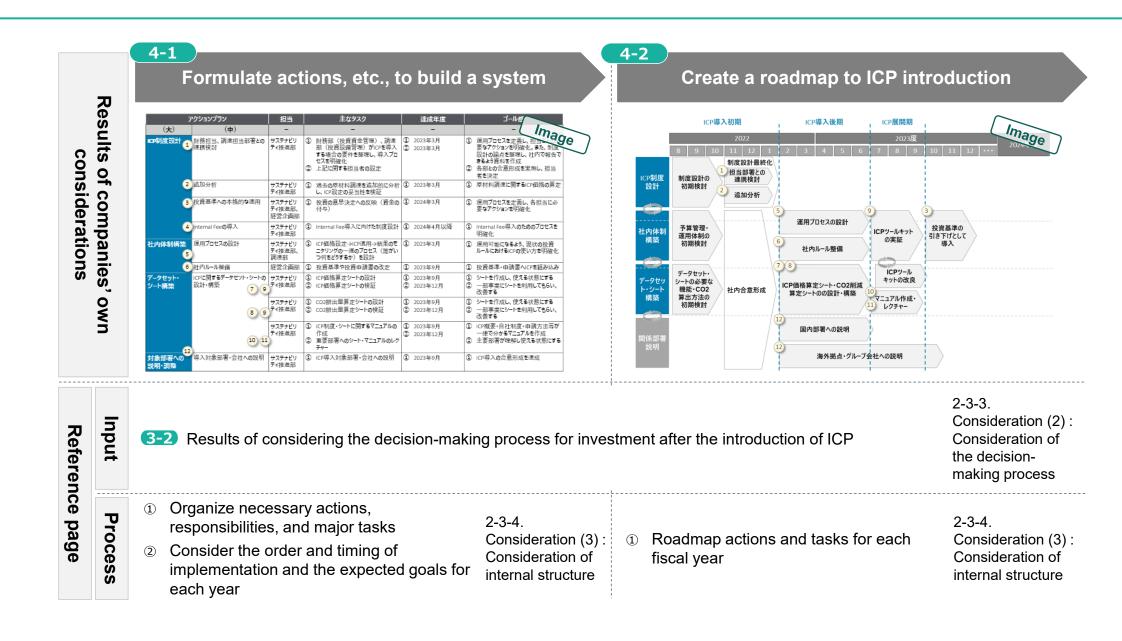
Applicable targets and corporate scope Organizational structure

Reduction targets and Budget control and

Management resources required for ICP introduction and expected management and operation

Maximize effectiveness through the PDCA cycle while minimizing input resources by utilizing existing systems

Management resources	Current situation	Additional resources to be invested by ICP introduction	Expected effects
Personnel	Existing structure for investment process and CO2 emissions calculation	The existing structure will basically be utilized. One or two additional employees may be added. Human resource costs	The involvement of multiple departments, including sustainability promotion, corporate planning, and finance will enable decarbonization investments and initiatives to be made in a more effective framework that is closer to normal business promotion
Materials	Conventional investment application forms, CO2 calculation tools, etc. exists	New_investment application forms and internal ICP price calculation sheets which take ICP into account are required. Documentation and sheet management costs	Information on investment performance and reductions (i.e., cost-effectiveness) related to decarbonization will be accumulated
Money	Certain investment budgets for decarbonization exists, but are not linked to decarbonization targets	Additional costs incurred (Reduction × ICP price) Additional costs	Potential for cost savings and increased profit margins from capturing carbon- related opportunities by addressing carbon costs that are expected to increase in price in the future
Information	Information exists on previous investment performance and CO2 emissions	Track record of decarbonization investments related to ICP, results of monitoring CO2 reductions from investments Information management costs	Monitoring of information on investment performance and reductions enables more effective reduction measures, investment budgets, and ICP pricing
	➡ Promote budget co	ze input resources? ntrol and budget operation	How to maximize effectiveness? → Interact the effects extracted from each management resource


ote budget control and budget operation using existing systems and frameworks

in a PDCA cycle

Introductory purposes	Set price	Application and decision- making process	Organizational structure	Applicable targets and corporate scope	Reduction targets and investment linkage	Budget control and budget cap

Steps to consider organizational structure

Formulate actions, etc., to build a system and create a roadmap for the ICP introduction

-1 Explanation on the formulation of actions, etc. for the establishment of the system

Organize the actions required for ICP introduction and list the order and timing of implementation and the expected goals for each year

In the introduction of ICP, necessary actions, the department in charge, and the order/timing of implementation will be discussed. The timing of implementation will be set with a multi-year perspective

(Minimum actions assumed to be necessary)

ICP system design

- Design of organizational structure related to ICP system and collaboration with other departments
- · Consideration of future ICP utilization methods
- Design of investment process to be added/changed in ICP introduction
- · Development of internal rules related to investment applications

Construction of datasets/sheets related to ICP

- "Internal ICP price calculation sheet" that compiles external information, etc. for reviewing ICP prices
- "Internal CO2 emissions calculation sheet" to calculate CO2 emissions of the investment target

(Organizational structure for ICP which is assumed to be required as a minimum)

- Overall supervision and point of contact for the ICP system (formulation of rules, internal notification, and Q&A response)
- Data management related to ICP (CO2 calculation results, budget application data, investment data, etc.)
- Budget control related to ICP

1	アクションプラン	担当	主なタスク	译成年度	
(大)	(中)	123	±47X7	注成牛皮	Image
KP制度設計 1	財務担当、調達担当部署との 連携検討	サステナビリ ティ推進部	 財務部(投資資金管理)、調達 部(投資設備管理)がにを導入 する場合の要件を整理し、導入プロ セスを明確化 上記に関する担当者の設定 	 2023年3月 2023年3月 	 運用プロセスを定義し、担当ことの 要なアクションを明確化。また、制度 設計の論点を整理し、社内で報告で きるよう資料を作成 各部との合意形成を実施し、担当 者を決定
2	追加分析	サステナビリ ティ推進部	 過去の原材料調達を追加的に分析し、ICP設定の妥当性を検証 	① 2023年3月	 原材料調達に関するICP価格の算定
3	投資基準への本格的な適用	サステナビリ ティ推進部、 経営企画部	 投資の意思決定への反映(資金の 付与) 	② 2024年3月	 運用プロセスを定義し、各担当に必要なアクションを明確化
4	Internal Feeの導入	サステナビリ ティ推進部	 Internal Fee導入に向けた制度設計 	 2024年4月以降 	 Internal Fee導入のためのプロセスを 明確化
社内体制構築 5	運用プロセスの設計	サステナビリ ティ推進部、 調達部	③ ICP価格設定→ICP適用→結果のモ ニタリングの一連のプロセス(誰がい つ何をどうするか)を設計	② 2023年3月	 運用可能になるよう、現状の投資 ルールにおけるICPの使い方を明確化
	社内ルール整備	経営企画部	 投資基準や投資申請書の改定 	③ 2023年9月	 投資基準・申請書へICPを組み込み
データセット・ シート構築	ICPに関するデータセット・シートの 設計・構築 79	ティオ体 3種 27	 ICP価格算定シートの設計 ICP価格算定シートの検証 	 2023年9月 2023年12月 	 シートを作成し、使える状態にする 一部事業にシートを利用してもらい、 改善する
	89	サステナビリ ティ推進部	 CO2排出量算定シートの設計 CO2排出量算定シートの検証 	 2023年9月 2023年12月 	 シートを作成し、使える状態にする 一部事業にシートを利用してもらい、 改善する
	10 11	サステナビリ ティ推進部	 ICP制度・シートに関するマニュアルの 作成 重要部者へのシート・マニュアルのレク チャー 	 2023年9月 2023年12月 	 ICP概要・自社制度・申請方法等が 一律で分かるマニュアルを作成 主要部署が理解し使える状態にする

lication and decision-

Organizational Applica

Applicable targets and Reduction targets and investment linkage

Budget control and

4-1 1 ICP system design

In introducing ICP, cooperation with other departments is important. The future use of ICP and the development of investment processes/internal rules will also be considered.

Initial period of introduction: Time to design the system and develop the infrastructure for ICP introduction Latter period of introduction: Time to implement specific actions to introduce ICP Deployment period: Time to deploy the ICP system to target departments/companies Development period: Time to further improve the ICP system

ltem	Implementati on period	Action	Overview of the action	Description of the action
1	Initial period of introduction	Collaboration with other departments in ICP operations	 Collaborate with departments/group companies that play additional roles in ICP introduction 	 Build consensus and coordinate implementation methods with departments/group companies which play additional roles To properly operate ICP, having a minimum system in place is essential
2 ICP system	Latter period of introduction	Implementation of additional research on missing information Note: Optional	 Conduct additional research and analysis if there is missing information in the price calculation (e.g., gathering information on past investments) 	 Conduct additional research and analysis when there are investments that need to be further analyzed to calculate the ICP price Since information is naturally collected through the ICP introduction, this is unnecessary when there is nothing to be analyzed as a priority
design 3	Latter period of introduction	Consideration of future ICP utilization	 Consider future ICP utilization methods (e.g., application to investment standards) 	Organize actions to be taken to apply ICP to actual investment standards/value reductions, rather than merely referring to ICP values
4	Latter period of introduction	Design of operational /investment process	 Design the operational /investment process to be added with ICP introduction 	• Further clarify the timing of implementation based on the results organized in 2-2
5	Latter period of introduction	Development of internal rules	 Develop internal rules related to investment applications, etc. that need to be revised with the introduction of ICP 	 Implement any necessary changes to internal rules related to investment flow, application formats, and investment decisions when introducing ICP

tion and decision-

Organizational Applicabl

na Reduction

budget control and

4-1 1 Construction of datasets and sheets

Create an environment where anyone can use ICP through manuals and lectures to other departments as well as sheets for price review and reduction calculation. In addition, provide explanations to departments and others involved in the ICP system.

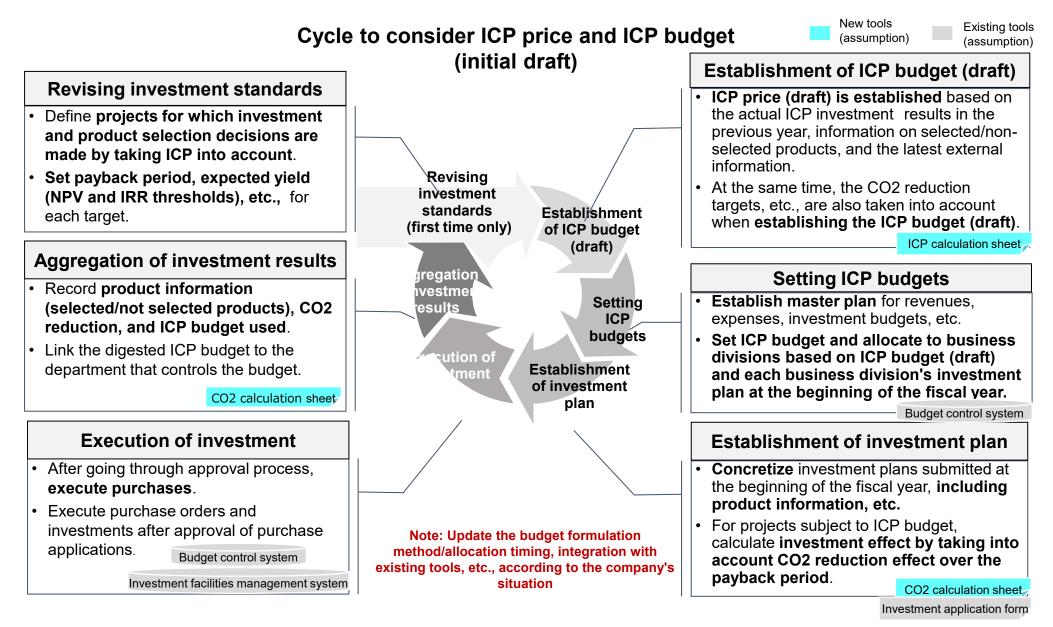
Initial period of introduction: Time to design the system and develop the infrastructure for ICP introduction Latter period of introduction: Time to implement specific actions to introduce ICP Deployment period: Time to deploy the ICP system to target departments/companies Development period: Time to further improve the ICP system

Items	Implementation period	Action	Overview of actions	Description of actions
Construction of datasets/sheets	6 Latter period of introduction	Design of internal ICP price calculation sheet	 Design an "ICP price calculation sheet" that summarizes external information and other data to review the ICP price 	 Create a calculation sheet to regularly review ICP prices, reflecting the latest external information, the status of ICP introduction at other companies, and investment information that contributes to the company's own decarbonization At the same time, determine the timing of the review, the department in charge, etc.
	ZLatter period of introduction	Design of internal CO2 reduction calculation sheet	 Design a "CO2 reduction calculation sheet" to calculate CO2 emissions in the investment target 	 Create a calculation sheet for CO2 reductions, which is essential for ICP utilization The department in charge will also be determined as emission factors, electricity prices, etc., are expected to need to be updated
related to ICP	8 Deployment period	Evaluation of calculation sheet Note: Not required, but recommended.	• Evaluate the calculation sheet. (Pilot the use of the sheet after its creation, and pursue its ease of use, etc.)	 It is recommended to evaluate the functionality of the created calculation sheet prior to company-wide rollout First, ask some departments to cooperate, and then make improvements as necessary
	9 Deployment period	Creation of internal manuals	Create a manual that provides an overview of ICP, the company's ICP system, contact information, application procedures, how to use the calculation sheet, etc.	 Create a manual that anyone can understand and use the ICP Information needs to be updated regularly, and the department in charge should be decided
	Deployment 10 period	Delivery of lectures on sheets and manuals to key departments	 Lecture each business division on how to use the sheets and manuals 	Lectures will be given to departments that use the sheets and manuals frequently
Explanation and coordination to target departments	Deployment period	Provision of explanations and internal coordination to ICP target departments/companies	Explain and coordinate the introduction of ICP to the departments/group companies involved in the ICP	Build consensus, coordinate, and promote understanding toward the introduction of ICP to ICP target departments/companies

4-1 Image of the internal ICP manual and calculation sheet

Organizational

An overview of each document and sheet and an image of its structure is as follows:

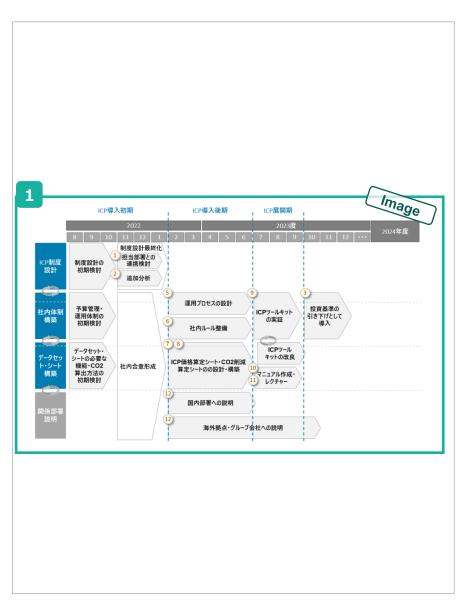

Applicable targets and

Reduction targets and

Budget control and

	ICP system and overview document	ICP price calculation methodology overview document	CO2 reduction calculation sheet
	Internal manual summarizing the ICP system, contact points, application procedures, etc.	Sheet that consolidates external/company information necessary for annual ICP price review	CO2 emissions calculation sheet required for ICP investment applications
Output image	Booklet	Excel, etc., "XX yen/tCO2"	Excel, etc., "▲XX tCO2/case"
Contents	 ICP Utilization Guidelines (this guide) Details of consideration (1) 	 Internal ICP price calculation sheet based on the investment project in the company in STEP 1 Details of consideration (1) 	 Utilization of materials and tools used by the company to calculate CO2 reductions
Table of contents (example)	 Introductory purposes of ICP The company's structure for ICP introduction ICP pricing in the company ICP investment targets How to apply for and use ICP investment (including a lecture on how to use the sheets and tools) Contact point for the ICP system Other Q&A 	 External prices (carbon price and emissions credit price in each country) ICP prices at benchmark companies ICP price information based on the company's own investments (formula for calculating ICP) 	 Emissions comparison between existing facilities and new facilities Information on newest facilities Reference information on emission factors, electricity prices, etc. for calculation
Update timing (example)	 Update whenever there is a change in the above items. 	 Periodically (e.g., once a year) update information. 	 Periodically (e.g., once a year) update values used to calculate emission factors, etc.

In the future, more appropriate ICP pricing and budgeting will be possible through the PDCA cycle by utilizing the ICP calculation sheet and CO2 calculation sheet



4-2 Explanation on developing an internal roadmap to ICP introduction

Put the actions for each fiscal year into a roadmap by item based on the results of the formulation in 4-1

Roadmap the actions and departments in charge for each fiscal year

- · Roadmap the actions for each fiscal year
- Be aware of the possibility that failure to coordinate and collaborate within the company may not lead to the next action, and organize the necessary internal coordination and collaboration in as much detail as possible
- Even for those actions that have not yet been determined in detail (e.g., introduction of internal fees), organize them as rough actions and consider the overall expected goal

Table of contents

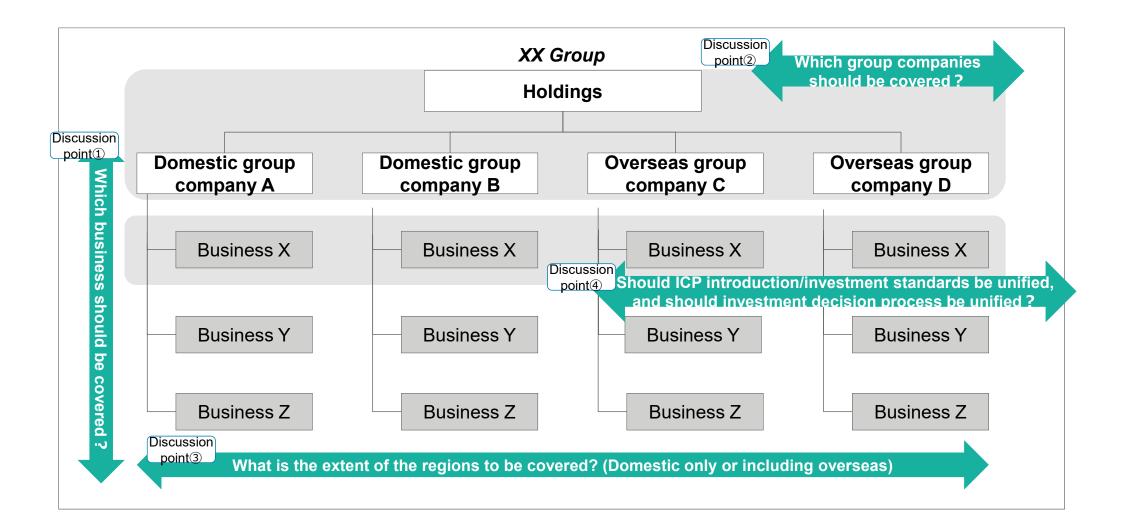
Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations	1-1 1-5 1-16 1-52
	-
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execution 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

	-
3-4-2. Goal setting	
5	

Appendix

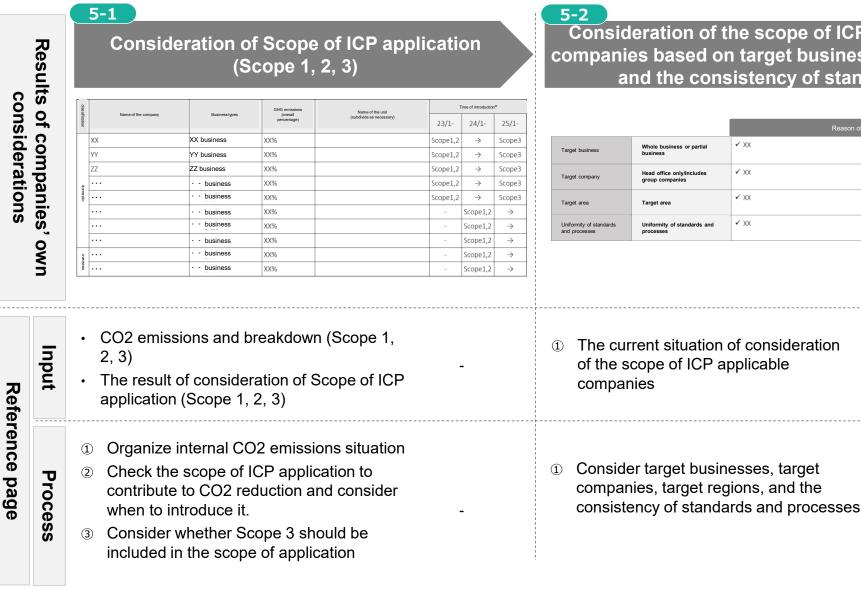
_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application and	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduction targets and investment	tion 2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and real information	ference 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136
Chapter 3 Nature-related financial disclosure model (TNED scenario analys	ie and


Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) - f Ma del Duele et 04

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Expected corporate structure and the scope of ICP application and applicable companies

Consider (1) target businesses (2) target companies, (3) target regions, and (4) consistency of standards


Applicable targets and corporate scope Budget control and

Applicable targets and corporate scope

Steps in the consideration of applicable targets and corporate scope

Consider Scope of ICP application and the scope of applicable companies

Consideration of the scope of ICP applicable companies based on target businesses, regions, and the consistency of standards

		Reason of selection
Target business	Whole business or partial business	✓ XX
Target company	Head office only/Includes group companies	✓ XX
Target area	Target area	✓ XX
Uniformity of standards and processes	Uniformity of standards and processes	✓ XX

stment linkage budget

5-1 Explanation on consideration of the scope of ICP application and the timing of its introduction

First, confirm internal emissions status in Scope 1, 2, 3, and identify Scope/businesses/facilities with large emissions. Consider products/opportunities that contribute to emission reductions, and consider the scope of application

Organize the CO2 emissions situation in the company (See the purpose of ICP introduction as well)

 Confirm emissions and a breakdown of Scope 1, 2 (if possible, include Scope 3) and identify Scope (businesses/facilities) that is a bottleneck for emissions reduction

2 Confirm whether the scope of ICP application currently under consideration will lead to CO2 reduction

- Examine whether the scope of ICP application currently under consideration includes Scope/businesses/facilities with large emissions.
- If not, add them to the scope of application. If it is difficult to set the scope of application immediately due to internal circumstances, etc., consider the deadline for setting it

(Note: See the next page for responses to each applicable target)

- If necessary, consider to include CO2 reductions related to Scope 3 (raw materials procurement/R&D/M&A, etc.) in the scope of application
 - Consider whether supply chain such as raw materials procurement/R&D/M&A and products and technologies of other companies that contribute to CO2 reduction (=Scope 3) should be included in the scope of application.
 - Whether the products and technologies contribute to CO2 reduction can be examined by calculation of emission reduction/avoided emissions

	2 3]					
8		Destructions	GHG emissions	Name of the unit		Ima	Q0
o a a le a a fa a	Name of the company	Business types	GHG emissions (overall percentage)	Name of the unit (subdivide as necessary)	23/1-	1ma	ge
assification	Name of the company	Business types XX business	(overall	Name of the unit (subdivide as necessary)	23/1- Scope1,2	24/1- →	ge Scope3
assification			(overall percentage)	Name of the unit (subdivide as necessary)	25/1	2.4/1	
assistantion	xx	XX business	(overall percentage) XX%	Name of the unit (subdivide as necessary)	Scope1,2	→	Scope3 Scope3
	XX	XX business YY business	(overall percentage) XX% XX%	Name of the unit (subdivide as necessary)	Scope1,2 Scope1,2	\rightarrow \rightarrow	Scope3 Scope3 Scope3
	XX YY ZZ	XX business YY business ZZ business	(overall percentage) XX% XX% XX% XX%	Name of the unit (subdivide as necessary)	Scope1,2 Scope1,2 Scope1,2	\rightarrow \rightarrow \rightarrow	Scope3 Scope3 Scope3 Scope3
	xx yy 	XX business YY business ZZ business · · business	percentage) XX% XX% XX% XX% XX% XX% XX%	Name of the unit (subdivide as necessary)	Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2	\rightarrow \rightarrow \rightarrow \rightarrow	Scope3 Scope3 Scope3 Scope3
	xx YY ZZ 	XX business YY business ZZ business · · business · · business	percentage) XX%	Name of the unit (subdivide as necessary)	Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	Scope3 Scope3 Scope3 Scope3 Scope3
	xx YY ZZ 	XX business YY business ZZ business · · business · · business · · business	(voral) XX%	Name of the unit (subdivide as necessary)	Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2	$\begin{array}{c} \rightarrow \\ Scope1,2 \end{array}$	Scope3 Scope3 Scope3 Scope3 Scope3 Scope3
dassistation domestic average	xx YY ZZ 	XX business YY business ZZ business · · business · · business · · business · · business	(wereal) percentage XX% XX%	Name of the unit (subdivide as necessary)	23,1 Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2 Scope1,2 - - -	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \end{array}$ Scope1,2 Scope1,2	Scope3 Scope3 Scope3 Scope3 Scope3 Scope3 → →

5-1 2 The scope of applicable targets and actions needed

Advantages and disadvantages of each scope of applicable targets are as follows. R&D and M&A in Scope 3 require calculation of avoided emissions, but may lead to investments that contribute to future sales and corporate value.

	Scope 1, 2	Scope 3 Upstream, category 1 raw materials, etc.	Scope 3 Downstream, R&D or M&A that contributes to category 11	
Pros	Internal CO2 will be reduced.		Technology and product development related to decarbonization will advance, which may lead to higher future sales and corporate value	
Cons	 Since this only leads to cost reduction through internal CO2 reduction, it is difficult for this to result in an increase in future sales and enterprise value, compared to its application to R&D and M&A. 		 Commonality The calculation is difficult because it is necessary to identify the company's products and technologies that contribute to reductions and to calculate the avoided emissions In the case of R&D Creating rules and building consensus takes time, because it requires involvement of the 	
CONS		 Data on supply chain such as raw materials is required Involvement of departments in charge of raw materials procurement is required 	 department in charge of investment planning and allocation related to R&D and the department in charge of R&D. In the case of M&A Creating rules and building consensus takes time, because it requires the involvement of the department in charge of M&A Update on evaluation standards of M&A is required 	
Image of CO2 calculation	Calculate emissi (Emissions from the existing facility - Emissions from facility to be introduced) × ICP price	ons reduction (Emissions from existing raw materials procurement - Emissions from raw materials procurement to be introduced) × ICP price	Calculate avoided emissions (Emissions in the use phase of baseline products - Emissions in the use phase of new products) × ICP	

d decision-Organization

and corporate scope

Budget control and

5-2 Explanation on consideration of the scope of ICP applicable companies

Consider the scope of ICP applicable companies in terms of the whole business/part of businesses, the head office only/including group companies, and subsidiaries, including overseas/domestic only, standard setting methods, etc., and organize them in chronological order

Consider the scope of ICP applicable companies within the company (Example of arguments)

- Will all businesses of the target company be covered or only some of them?
- Does it cover the head office only, or does it also cover group companies and subsidiaries?
- · Does it cover overseas companies or only domestic companies?
- If ICP is to be introduced across businesses or companies, will the standards (ICP price, investment standards, and operation rules) and investment decision-making process be set across the board or individually?

2 Based on the result of consideration of the scope of ICP application/scope of ICP applicable companies, update actions for ICP introduction organized in consideration 3 as appropriate (Example of viewpoints)

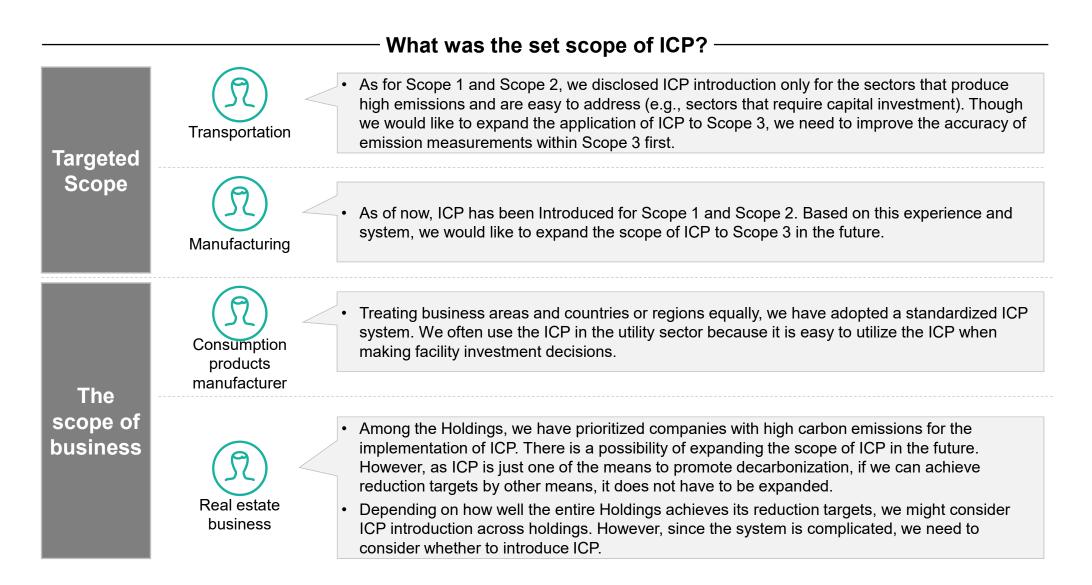
- · Are there any departments, etc. that need to be involved?
- Are there any additional operational or internal rules that need to be developed?
- Are there any additional toolkits (ICP price calculation tool and CO2 emissions calculation tool) required?

	1	
		Reason of selection
		Reason of selection
Target business	Whole business or partial business	✓ XX
Target company	Head office only/Includes group companies	✓ XX
Target area	国内のみ or 海外含む	✓ XX
Uniformity of standards and processes	Uniformity of standards and processes	✓ XX

	Action plan	Responsi -bility	Major tasks	Achievement year	
(大)	(中)	-	-	-	Define the operational provide
ICP制度設計 ICP system design	Consider collaboration with finance and procurement departments	*Sustainability Promotion *Department	Organize the requirements for the Finance Department (Investment Fund Management) and Procurement Department (Investment Equipment Management) to introduce (DP and clarify the implementation process Setting of person in charge of the above.	 March 2023 March 2023 	Define the operational pro- clarify the necessary actions for an operation in charge. In addition, we organized the points at issue in system design and created materials that can be reported internally Build consensus with each department and decide on the person in charge
	Additional analysis	-Sustainability Promotion Department	Additional analysis of investments related to past raw material procurement and verification of the validity of ICP settings	① March 2023	Calculation of ICP price for raw material procurement
	Full-scale application of investment standards	Sustainability Promotion Department, corporate planning department	 Reflection in investment decision- making (granting of funds) 	① March 2024	① Define the operational process and clarify the necessary actions for each person in charge
	Introduction of internal fee	Sustainability Promotion Department	 System design for introducing internal fees 	 After March 2024 	 Clarifying the process for introducing internal fees
体制整備·導 System development/introduction	入 Design operational process	Sustainability Phomotion Department, procurement department	 ICP pricing—ICP adoption—Design series of processes for monitoring results (who does what and when) 	① March 2023	Clarify how to use ICP under current investment rules so that it can be operationalized
	Establish company rules	Corporate planning department	Revision of investment standards and investment application form	① September 2023	 Incorporating ICP into investment standards and application forms
ツールキット構 Toolkit building	Design and creation of ICP toolkit	Sustainability Promotion Department	Design of ICP price calculation tool Validation of ICP price calculation tool	① September 2023 ② December 2023	Create a tool and make it usable Have some businesses use the tool and improve it ································
		Sustainability Promotion Department	Design of CO2 emissions calculation tool Validation of CO2 emissions calculation tool	① September 2023 ② December 2023	Create a tool and make it usable Have some businesses use the tool and improve it
		Sustainability Promotion Department	Creation of toolkit/ICP system manual Creation of toolkit/ICP system manual	① September 2023 ② December 2023	Create a manual that uniformly explains ICP overview, company system, application method, etc. Make it understandable and usable by each department
Explanation to target departments	Explanation to departments/companies targeted for implementation	Sustainability Promotion Department	① Explanation to departments/companies targeted for ICP implementation	③ September 2023	 Achieve consensus for the introduction of ICP

5-2 1 Advantages and disadvantages regarding the scope of ICP applicable companies

Organizational structure


Advantages and disadvantages of each option are as follows:

		Pros		Cons
Target	The whole business	 ICP is introduced as a unified concept of decarbonization. As a result, awareness of decarbonization will be fostered across the whole company 	•	Internal coordination/persuasion are required including rule changes and investment process changes because the whole company must manage investments and data in a unified way
businesses	Part of businesses	 Concentrating investments in businesses with high CO2 emissions will enable investments that contribute to efficient decarbonization 	•	While awareness about decarbonization will be fostered in businesses with large CO2 emissions, awareness will remain the same in the other businesses
	Head office only	Governance is easy to implement, and it is easier to introduce ICP and monitor investment and CO2 reduction performance	•	If companies with large emissions/opportunities are not included in the scope of ICP application, decarbonization across the group will not be progressed
Target companies	Including group companies	Decarbonization investment across the group will be promoted	•	Management costs are huge as investments and data need to be managed and monitored in a uniformed way across the group Internal coordination/persuasion are required including rule changes and investment process changes in each company
	Domestic only	Governance is easy to implement, and it is easier to introduce ICP and monitor investment and CO2 reduction performance	•	Decarbonization investments in overseas subsidiaries are not promoted
Target regions	Including overseas	 Possible to promote decarbonization across the globe 	•	ICP prices consideration and emissions calculations need to take into account carbon prices, regulation, emission factors, etc. in each region Internal coordination/persuasion, including rule changes and investment process changes, are required in overseas subsidiaries
Consistency	Unified throughout the company	 It is easier to implement operations, management, monitoring because ICP is applied as a standard across the company 	•	It takes time to introduce ICP due to the need to change rules in each region and company and other internal adjustments
of standards and processes	Set by each company	 ICP can be introduced in accordance with the existing internal rules and investment standards of each region and company 	•	Processes to consolidate data on investment performance and CO2 emissions is required Personnel responsible for operations in each region/company are needed because it is necessary to operate the system in each region/company

Applicable targets Reduction targets and Budget control and investment linkage budget cap

Many companies prioritize Scope 1 and Scope 2 as targets. Regarding business scope, it is one idea to give priority to business with large emissions and targets that are easy to utilize, while considering the degree of difficulty and other factors when expanding the scope.

and corporate scope

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations	1-1 1-5 1-16
1-2-3. Overview of nature-related risks and TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and execution	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

3-4-2. Goal setting	
---------------------	--

Appendix

_	page		
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international) and reference parameters and tools			
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1		
1-2-1. List of parameters	1-87		
1-2-2. Physical risk tools	1-189		
1-2-3. List of TCFD related literature	1-216		
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ernal		
2-1. Definition of internal carbon pricing	2-1		
2-2. Theoretical version of internal carbon pricing	2-20		
2-2-1. Consideration of price setting	2-23		
2-2-2. Consideration of utilizing method	2-35		
2-2-3. Consideration of internal structure and future initiatives	2-47		
2-3. Practical version of internal carbon pricing	2-53		
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55		
2-3-2. Consideration (1) : Consideration of ICP price	2-59		
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66		
2-3-4. Consideration (3) : Consideration of internal structure	2-70		
2-3-5. Consideration (4) : Consideration of the scope of ICP application and	b		
applicable companies	2-79		
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc			
targets and investment	2-87		
2-3-7. Consideration (6) : Consideration of budget management and limit on ICP	2-90		
2-4. Reference information on internal carbon pricing			
2-4-1. Frequently asked questions and example answers, glossary, and ref information	ference 2-97		
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111		
2-4-3. List of companies that have introduced ICP in Japan	2-136		
Chanter 3 Nature-related financial disclosure model (TNFD scenario analysi	is and		

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting) . .

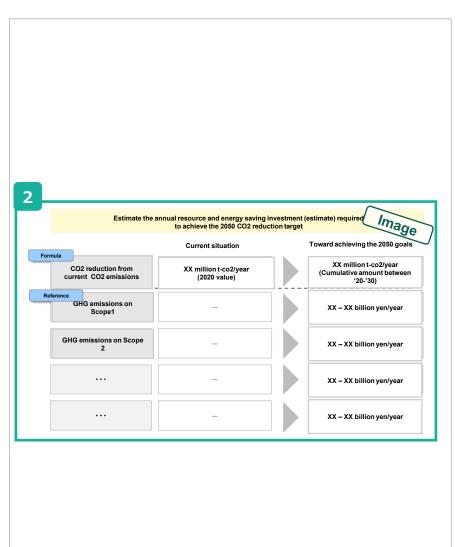
3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Steps in consideration of reduction targets and investment linkage

To confirm the linkage between decarbonization targets and the amount of investment, estimate the amount of investment needed to achieve the target and organize it as available information when drafting a budget.

		6-1 Comparis	son between c	decarbonization	targ	ets and current
	Results	Estimate the annual resource and energy saving investment (estimate) required to achieve the 2050 CO2 reduction target				
S	lts	Formula		Current situation	1	Toward achieving the 2050 goals
nsi	of c		CO2 reduction from current CO2 emissions	XX million t-co2/year (2020 value)		XX million t-co2/year (Cumulative amount between '20- '30)
considerations	companies'	Reference	GHG emissions on Scope1	_		XX – XX billion yen/year
ions	anies		GHG emissions on Scope 2	_		XX – XX billion yen/year
	, own			_		XX – XX billion yen/year
	_			_		XX – XX billion yen/year
Reference	Input	 • 1-0 Internal decarbonization targ • Consideration of internal CO2 of 		-	,	finvestment
ice page	Process	 Implementation of a simulation Arrangement of consideration 				-

6-1 Explanation on comparison between decarbonization targets and current investments


To achieve decarbonization-related targets, examine whether the targets align with the current decarbonization-related budget, and organize the necessity of linking the decarbonization target with investments and the effects of introducing ICP.

Reduction targets and investment linkage

- 1 Organize the current decarbonization-related budget, including the amount of budget and budgeting approach (e.g., budget drafting methods)
 - ✓ Organize how budget amounts are determined, and whether it has a linkage with a decarbonization target
- 2 By estimating the amount of investment needed to achieve a decarbonization target, identify the gap between this amount and the current decarbonization-related budget. The above information can be used to persuade companies to introduce ICP and budgeting in the future

(Examples of calculation of the amount of decarbonization-related investment)

- Calculate the total reduction from current to the target year by "total usual CO2 emissions by target year - total CO2 emissions based on the target."
- ② Calculate "(total CO2 emissions reduction × ICP price) / number of years to target year" and estimate decarbonization-related investment needed by the target year

Table of contents

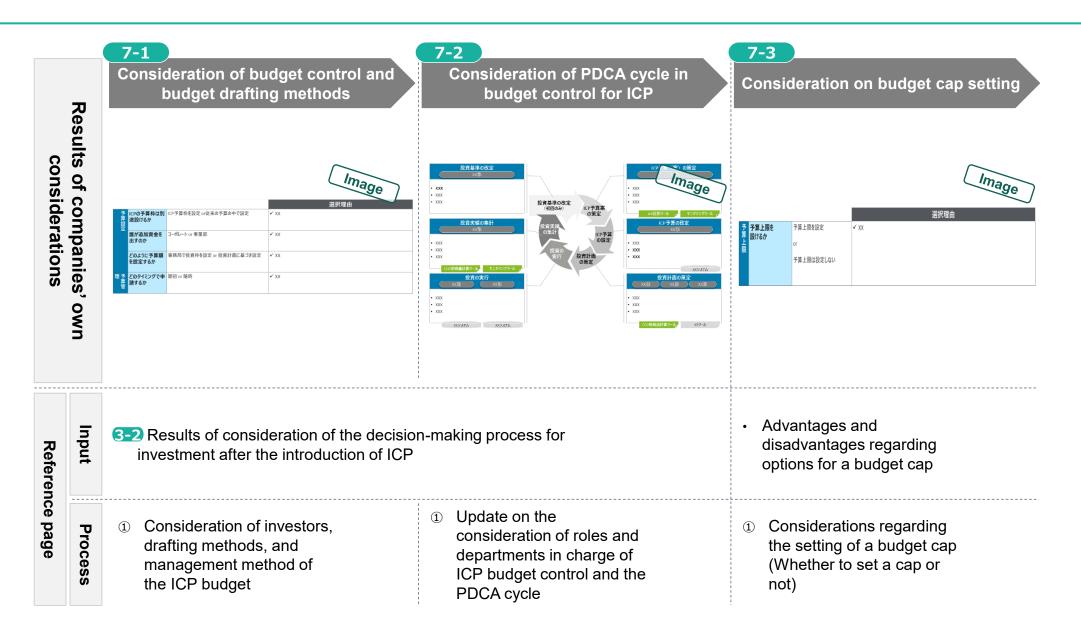
Main Part

	page			
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations	1-1 1-5 1-16 1-52			
The Direcommendations	1-52			
Chapter 2 TCFD scenario analysis practical points				
2-1. Steps to conduct scenario analysis	2-1			
2-1-1. STEP1. Establishment of governance	2-8			
2-1-2. STEP2. Assessment of Risk severity	2-17			
2-1-3. STEP3. Definition of scenarios	2-32			
2-1-4. STEP4. Business impact evaluation	2-48			
2-1-5. STEP5. Definition of countermeasures	2-69			
2-1-6. STEP6. Documentation and disclosure	2-83			
2-2. Incorporating scenario analysis into strategy and execution	on			
	2-91			
Chapter 3 Preparing for nature-related financial disclosure				
3-1. Relationship between TCFD and TNFD	3-1			
3-2. TNFD disclosure example	3-9			
3-3. Analysis tools	3-21			
3-4. Advanced nature-related financial disclosure	3-38			
3-4-1. TNFD Scenario Analysis	3-41			
3-4-2. Goal setting	3-70			

3-4-2. Goal setting	

Appendix

_	page			
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international)				
and reference parameters and tools 1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1			
1-2-1. List of parameters	1-87			
1-2-2. Physical risk tools 1-2-3. List of TCFD related literature	1-189 1-216			
Chapter 2 Definition, theory, practice, and reference information of ICP (int carbon pricing)	ternal			
2-1. Definition of internal carbon pricing	2-1			
2-2. Theoretical version of internal carbon pricing	2-20			
2-2-1. Consideration of price setting	2-23			
2-2-2. Consideration of utilizing method	2-35			
2-2-3. Consideration of internal structure and future initiatives	2-47			
2-3. Practical version of internal carbon pricing	2-53			
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55			
2-3-2. Consideration (1) : Consideration of ICP price	2-59			
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66			
2-3-4. Consideration (3) : Consideration of internal structure	2-70			
2-3-5. Consideration (4) : Consideration of the scope of ICP application and				
applicable companies	2-79			
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduction	2-87			
targets and investment 2-3-7. Consideration (6) : Consideration of budget management and limit	2-07			
on ICP	2-90			
2-4. Reference information on internal carbon pricing	2 00			
2-4-1. Frequently asked questions and example answers, glossary, and reference				
information	2-97			
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111			
2-4-3. List of companies that have introduced ICP in Japan	2-136			

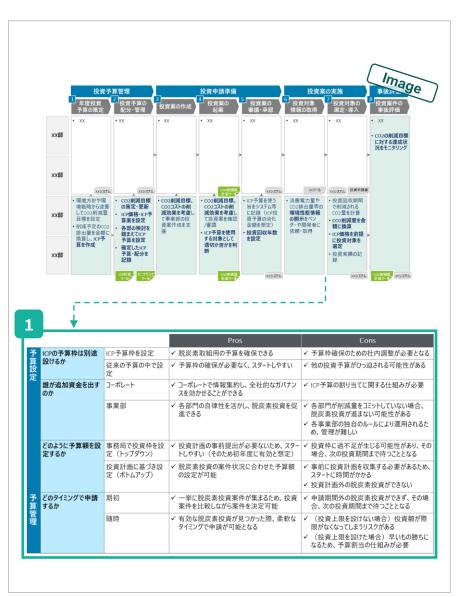

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Budget control and budget cap

Steps to consider budget control and budget cap

Consider budget control and budget drafting methods for ICP investment, PDCA cycle for budget control, and a budget cap


Consider the advantages and disadvantages regarding investors, drafting methods, and management methods of the ICP budget

```
Organize the advantages and disadvantages regarding ICP budget control/budget drafting.
```

By choosing a management method based on current investment application process, ICP can be introduced smoothly. 2-2 See consideration of investment decision-making process after the introduction of ICP as well.)

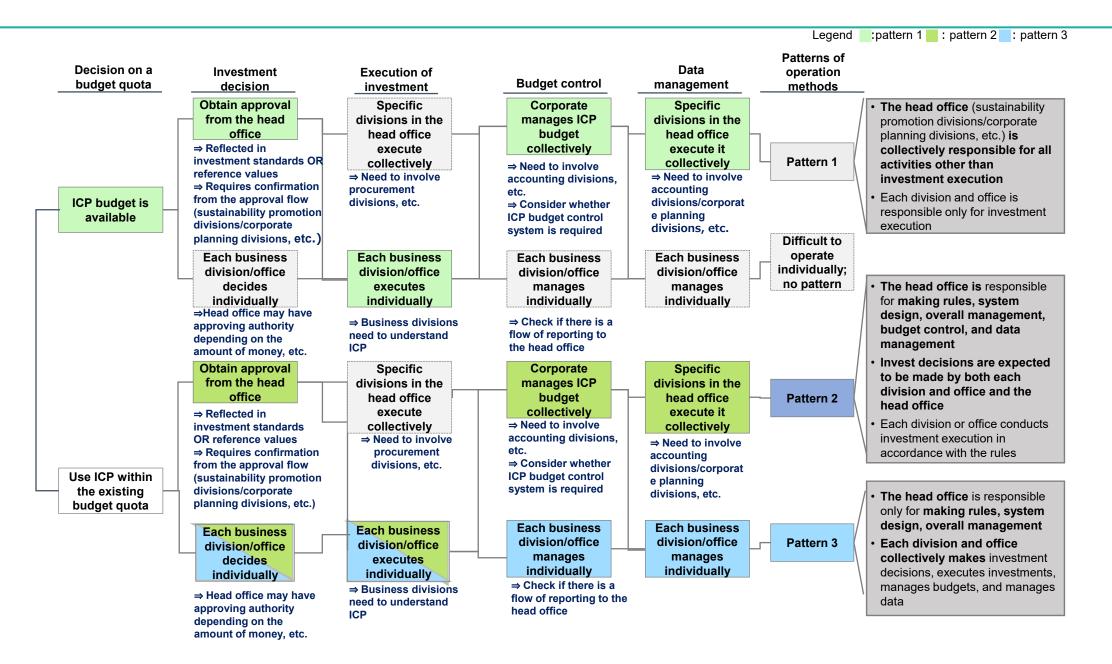
(Example of discussion points)

- Will ICP budget quota be established? (Established separately from a regular budget/managed within a regular budget)
- Who will provide the funds for the additional costs of ICP investments? (Corporate/each department)
- How will the ICP budget amount be organized? (Based on the investment plan submitted/secretariat sets the quota)
- When will budget application be filed? (beginning of term/at any time)

Budget control and budget cap Set price

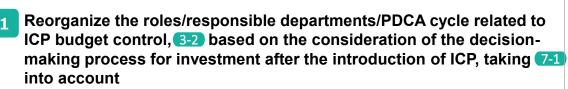
7-1 Discussion points on budget control and its advantages and disadvantages

Discussion points on budget control and its advantages and disadvantages are as follows:

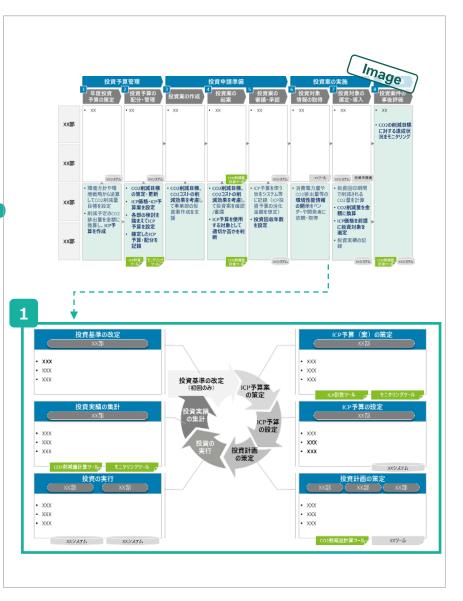

			Pros	Cons
oudgets	Will ICP budget quota be established separately?	Establish budget quotas for ICP	Budget for decarbonization initiatives can be secured	 Internal coordination for securing budget quotas is required
		Establish ICP budget within the existing budget	 It is easy to get started because securing budget quotas is not required 	Other investment budgets may be strained
	Who will provide the additional funds?	Corporate	 By consolidating information at the corporate level, corporate governance can be effective 	A mechanism for allocation of ICP budget is required
		Business divisions	 Decarbonization investments can be facilitated by allowing each department to be autonomous 	 If each department does not commit itself to reduction, decarbonization may not be promoted. Management is difficult because each business division manages it individually
	How will the budget amount be set?	Secretariat decides investment quotas (top- down)	 As preliminary submission of investment plan is not necessary, it is easy to get started (thus, it is assumed to be effective in the first year) 	• The investment quota might not be accurate, in that case, you have to wait for the next investment until the next application period
		Set based on investment plan (bottom-up)	 Budget amounts can be set in accordance with a situation of decarbonization investment projects 	 It takes time to get started because it is necessary to gather investment plans in advance. Decarbonization investment cannot be made outside an investment plan
	When will the application be submitted?	Beginning of term	 As decarbonization investment projects are gathered all at once, it is possible to decide on projects by comparing them 	• Decarbonization investments cannot be made outside an application period, and in that case, you have to wait for the next investments until the next application period
		At any time	 When a valid decarbonization investment is found, it can be applied for at flexible timing 	 (In the case of not setting a budget cap) there is a risk that the amount of investment becomes limitless. (In the case of setting a budget cap) As it is first-come first-served basis, a mechanism for budget allocation is required

Budget control and budget cap

Reduction targets and


7-1 1Reference) Patterns for implementing ICP

ICP operation methods can be divided into three main patterns



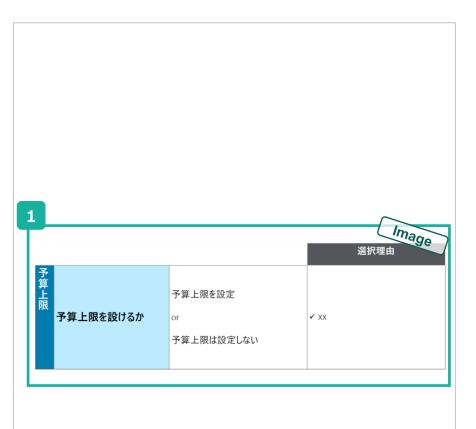
3-2 See 3-2 and consider PDCA cycle for ICP budget control

(Example of discussion points)

- Is each role, such as budget drafting, investment planning, investment execution, investment performance accumulation and revision of investment standards clearly defined?
- Is PDCA cycle utilizing existing systems or processes? (are there any processes with overlapping roles and tasks?)
- Are investments that have utilized ICP or data on CO2 reduction made available to be applied to the ICP budget for the next year or ICP pricing? (is data accumulated in an appropriate location, and is the mechanism for data collection in place?)

Applicable targets an

ction targets and


Budget control and budget cap

7-3 Consideration on setting a budget cap for ICP

Consider whether to set a budget cap for ICP

1 Consider whether to set a budget cap for ICP. Each option and its advantages and disadvantages are as follows:

- In the case of setting a budget cap
 - (Advantages) The costs do not exceed the predetermined amount of ICP investments
 - (Disadvantages) As the first one to invest wins, there is a possibility that investment will be postponed, or additional costs will be incurred if useful investments come up during the term
- In the case of not setting a budget cap
 - (Advantages) Investment can be executed regardless of the timing of application
 - (Disadvantages) Unexpected investment costs may be incurred

Table of contents

Main Part

	page
Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature	
1-2-1. Climate change and corporate management1-2-2. Overview of the TCFD recommendations1-2-3. Overview of nature-related risks and	1-5 1-16
TNFD recommendations	1-52
Chapter 2 TCFD scenario analysis practical points	
2-1. Steps to conduct scenario analysis	2-1
2-1-1. STEP1. Establishment of governance	2-8
2-1-2. STEP2. Assessment of Risk severity	2-17
2-1-3. STEP3. Definition of scenarios	2-32
2-1-4. STEP4. Business impact evaluation	2-48
2-1-5. STEP5. Definition of countermeasures	2-69
2-1-6. STEP6. Documentation and disclosure	2-83
2-2. Incorporating scenario analysis into strategy and executi	on
	2-91
Chapter 3 Preparing for nature-related financial disclosure	
3-1. Relationship between TCFD and TNFD	3-1
3-2. TNFD disclosure example	3-9
3-3. Analysis tools	3-21
3-4. Advanced nature-related financial disclosure	3-38
3-4-1. TNFD Scenario Analysis	3-41
3-4-2. Goal setting	3-70

4-1. TNED Scenario Analysis	3-4
4-2. Goal setting	3-7

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat	tional)
and reference parameters and tools	
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

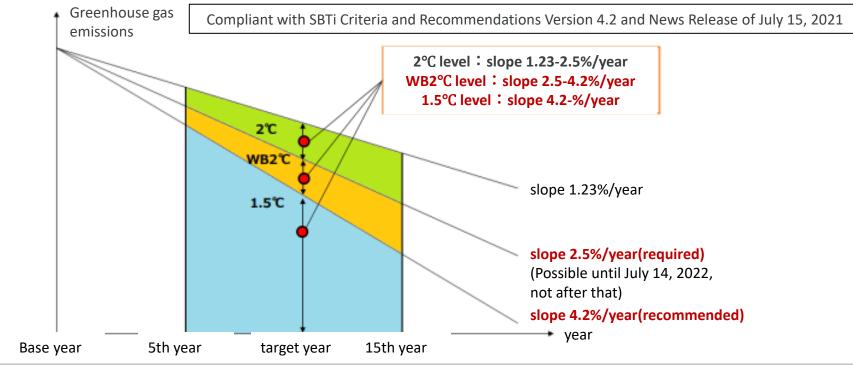
3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Regarding set price

	FAQ	Example answer
	 Should the price be set commonly for the entire group or separately set for each business/company? 	 Unified pricing as a group is becoming a standard
	 Should ICP be operated using a single price setting? 	There are examples of companies changing prices depending on the time frame, investment target, and purpose
About price setting	 Should ICP prices be reviewed every year? 	 If there is a clear change in the external environment, it should be reviewed in the following year. However, if there is no change, the price should be reviewed around once in three years Many companies review other companies' CDP responses once every few years
ĝ	 If you have equipment with a long useful life, should you use an external price for the future, such as 2050? 	 When using external pricing in the future, it is imperative to decide whether to use 1.5°C or 2°C, which depends on the level of commitment within the company There are few cases of companies using a price of 1.5°C for equipment with a long service life.

About internal structure

	FAQ	Example answer
		 Implementation of decarbonization within the organization should strongly be top-down led by the CEO. Discuss with each department and construct simple cost structure to achieve targeted goals
Abou	 In promoting decarbonization projects, there are oppositions from business units in increased costs. 	 Following cases should be explained: Even if decarbonization solution seems to be increasing costs in the short term, there may be cases in which it does not necessarily lead to an increase in costs, as in the mid to long-term it will lead to avoidance of carbon taxes or the acquisition of opportunities for decarbonization
t intern		 In some cases, ICP control department provides information on subsidies and the latest technology as reference information for ICP utilization
About internal structure		 Reference information such as a capital account plan reflecting ICP should be provided, in order to establish an image of investment taking decarbonization into account
re	• During the establishment period, after economic support (such as budget allocation from the head office) is no longer available, how should employees maintain their motivation to continue their efforts with environmental awareness?	 It is preferrable to maintain motivation by linking it to the company's mid and long-term goals and evaluation system
	 Should decarbonization projects that do not utilize ICP be monitored? 	• Monitoring is also necessary to identify investments that contribute to CO2 reduction and consider whether to include them in future ICP investment targets

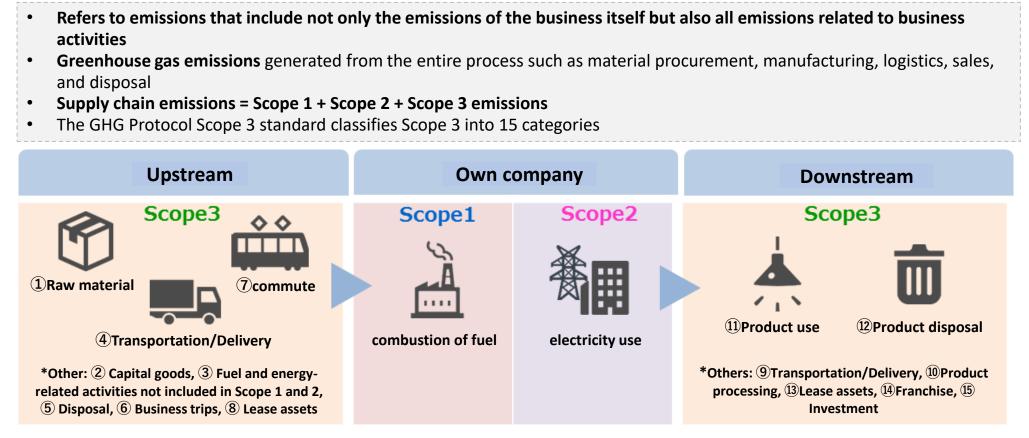

Regarding ICP applicable target range/applicable company range About budget management/budget limits

	FAQ	Example answer	
Regarding IC range/appli company r	 Is it better to think that investment using ICP is basically limited to capital investment? 	 There are examples of ICP being used not only for capital investment but also for renewable energy introduction and R&D research and development expenses 	
garding ICP target ange/applicable company range	 What calculation method should be used when Scope 3 (raw material procurement) is applied? 	 Calculate investment costs and basic units of raw material suppliers using actual measured values. In addition, Scope 3 (raw material procurement) needs to be received from the supplier because the emission factors and other basic units used by each supplier company are different 	
manag	 When conducting business for long-term, if the CO2 reduction effect changes every year, should numbers be revised each year? 	 Since present value is discounted using cash flow, emission factors and efficiency values should not b changed. Moreover, some companies temporarily calculate their service life as their legal service life 	
About budget management/budget limits	 How should ICP budget limits be set? 	There are also cases where the ICP system is used for businesses that contribute to CO2 reduction within the preset ESG investment/environmental investment framework	
lget lget limits	 If the ICP budget frame is fixed, how should the budget amount be determined? 	• Rather than deciding the amount in detail, some companies decide on a budget amount (such as X% of sales) and start operating within that budget. Another option is to use it within the investment framework for ESG and climate change response	

Glossary: What is SBT?

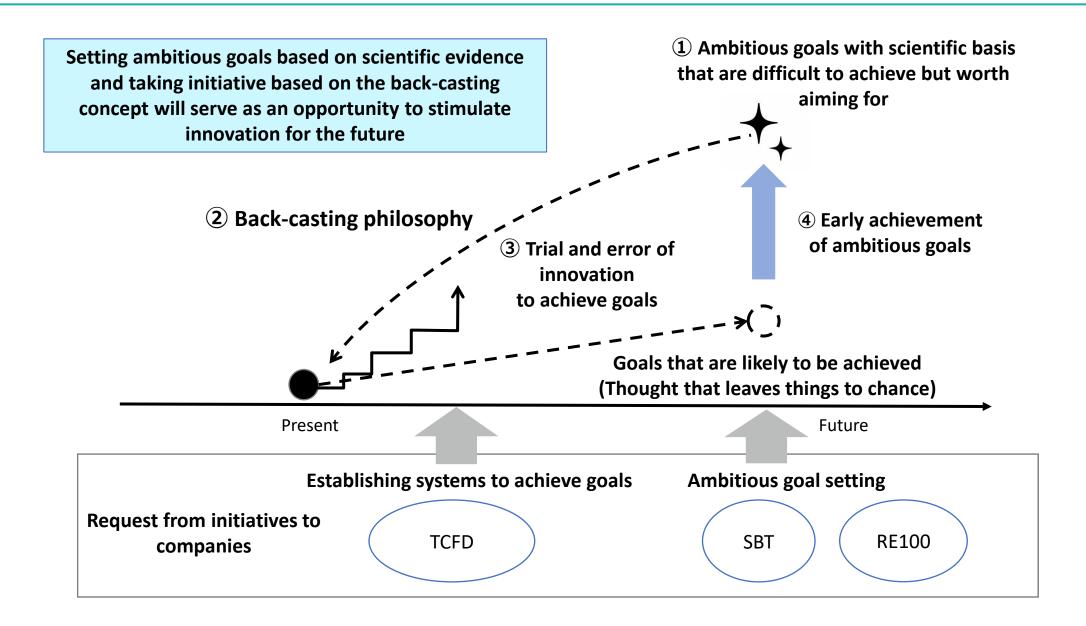
SBT is a greenhouse gas emission reduction target set by a company with a target year of 5 to 15 years in the future

- Science-Based Targets (SBTs) are GHG emission reduction targets set by companies aiming for 5 to 15 years future, consistent with the levels required by the Paris Agreement (which aims to limit global temperature increase to well below 2°C (WB2°C) and 1.5°C below pre-industrial levels)
- Number of participating companies : 4,523 companies worldwide set such targets. Japanese Company: 846 companies (as of February 5, 2024)
- Jointly managed by CDP, UNGC (United Nations Global Compact), WRI (World Resources Institute), and WWF (World-Wide Fund for Nature)


For details of SBT, refer to the Ministry of the Environment's website "Green Value Chain Platform" (http://www.env.go.jp/earth/ondanka/supply_chain/gvc/index.html)

- RE100 is a consortium of companies established in 2014 with the goal of 100% renewable electricity supply for their businesses
- Number of participating companies: 427 worldwide, 85 Japanese companies participating (as of February 8, 2024) Operated by The Climate Group and CDP
- Japan Climate Leaders Partnership (JCLP) is an administer of Japan region

List of 85 Ja	panese Comp	banies p	partici	pating	<u>in RE100</u>


Apparel	Service	Hospitality	Manufacturing
ASICS	KDDI	Watami	TDK
Infrastructure	LY Corporation	Retail	ΤΟΤΟ
Envipro Holdings Inc.	T&D Insurance Group	J. Front Retailing Group	Advantest
Daibiru	Asset Management One	Seven & i Holdings	AMADA
Prime Life Technologies	Coop Sapporo	Rakuten	Alps Alpine
Corporation	Japan Real Estate Investment	Marui Group	Casio
Kumagai Gumi	Corporation	Shiseido	Konica Minolta
Toda Corporation	SECOM	Tokyu Corporation	Seiko Epson
Nishimatsu Construction	BIPROGY Group	ASKUL	Sony Group
Sekisui House	Johnan Shinkin Bank	AEON	Diamond Electric Holdings
Sekisui Chemical Group	Dai-ichi Life Insurance	Takashimaya	Nikon
Tokyu Construction	Dentsu	Food, beverage & agriculture	Noritz
Tokyo Tatemono	Tokyu Land Corporation	Asahi Group Holdings	Panasonic Holdings
Nomura Real Estate Holdings	NEC Corporation	Sumitomo Forestry Group	Fujikura
Ichigo	Fujitsu	Nissin Foods Holdings	Unicharm
INFRONEER Holdings	Fuyo General Lease	Ajinomoto Group	RICOH
Hazama Ando Corporation	Nomura Research Institute	Kirin Holdings	ROHM
Hulic	Biotech, health care & pharma	Meiji Holdings	Okamura
Mitsui Fudosan	HOYA	Material	Sumitomo Rubber Industries
Mitsubishi Estate	Eisai	Kao	Murata Manufacturing
MORI Building	Ono Pharmaceutical	LIXIL	NGK INSULATORS
Daito Trust Construction	Otsuka Holdings	Asahi Kasei Homes	Hamamatsu Photonics K.K.
Daiwa House Group	Daiichi Sankyo Shimadzu		FUJIFILM Holdings

Supply chain emissions are the sum of emissions from business operations and business-related activities

The numbers shown within \bigcirc are Scope 3 categories

Scope1: Direct greenhouse gas emissions by businesses (fuel combustion, industrial processes) Scope2: Indirect emissions associated with the use of electricity, heat, and steam supplied by other companies Scope3: Indirect emissions other than Scope1 and Scope2 (emissions of other companies related to the business's activities) The TCFD system is useful for achieving SBT/RE100, etc. ICP is also one of the recommended mechanisms

ICP type	Explanation	Case	
Shadow price	 Set virtual price of carbon Use as a tool to understand potential risks and opportunities in operations and supply chains, and to support decision-making regarding capital investments to achieve climate-related goals. 	Seven Generations Shadow price set in response to Alberta's announcement that the carbon tax will be set at \$20/t. Although carbon tax is	
Implicit carbon price	 Calculated as procurement cost/reduction Quantifying capital investments to meet climate-related goals Often used as a benchmark for strategic ICP settings 	exempted until 2023, we recognize that incorporating carbon tax into business economics using ICP is necessary for future planning and capital investment. (Country: Canada, Sector: Energy)	
		<u>Viña Concha y Toro</u>	
Internal fee	 Claim payments based on carbon emissions by business unit Reinvest recovered funds in clean technology and low carbon transition 	Introduced an internal fee to make business departments aware of their impact on climate change and how to deal with it. We hope that ICP will encourage product and process innovation and lead to investment	
Internal	 Internal fee development model Business units and companies trade carbon credits allocated 	in low-carbon technologies. (Country: Chile, Sector: Consumer Goods)	
trading	 according to emissions. Reinvest recovered funds in clean technology and low carbon transition 	TD Bank Group Set ICP based on the cost of RECs and	
Carbon offsets or credits	 Aiming to achieve goals such as emissions reduction and carbon neutrality Introducing the purchase cost of offsets as the ICP price Focus is on reducing emissions within the company 	carbon offsets. Calculate the relative reduction contribution to the group's overall carbon emissions on an annual basis. Depending on the results, the business division will be repaid. (Country: Canada, Sector: Finance)	

Classification of ICPs by UN Global Compact/UNEP

Classification in Executive Guide to Carbon Pricing Leadership (UN Global Compact/UNEP,2015)

Shadow price	Implicit carbon price	Internal fee
cost for carbon to better understand	Calculating the implicit cost per Mt- CO2 based on how much the company	Creating an internal tax or fee that is assessed on various activities or expenditures, or setting up internal trading programs where business units or facilities buy and sell credits to meet GHG targets

Classification of ICP by WBCSD (World Business Council for Sustainable Development)

Classification in Emerging Practices in Internal Carbon Pricing A Practical Guide (WBCSD, 2015)

Shadow price	Implicit carbon price	Internal fee
If carbon emissions have a potential cost to the company in the future, putting a price on carbon internally is a means of managing that cost. This practice is referred to as "shadow carbon pricing"	N/A	An internal carbon fee is to incentivize emissions reduction for current operations. It differs from a shadow carbon price by the fact that it involves money transfer within the organization

Example of classification of ICP in the private sector ${f 1}$

Classification in How to Guide to Corporate Internal Carbon Pricing (Generation Foundation / CDP / Ecofys, 2017)

Shadow price	Implicit carbon price	Internal fee
Shadow pricing mechanisms generally embed a carbon price in the overall calculations for potential investments or climate risk analyses, but do not result in actual financial flows or monetary transfers	N/A	Internal carbon fee mechanisms is charging business units or departments for the GHG emissions associated with their energy use

Example of classification of ICP in the private sector 2

Classification in Putting a Price on Carbon (CDP,2017)

Shadow price	Implicit carbon price *There is no clear definition stated, Described below in the text	Internal fee
Shadow price is attaching a hypothetical cost of carbon to each tonne of CO2e as a tool to reveal hidden risks and opportunities throughout its operations	Some companies calculate their "implicit carbon price" by dividing the cost of procurement by the tonnes of CO2e abated. This calculation helps quantify the capital investments required to meet climate-related Targets	Internal fee is charging responsible business units for their carbon emissions. These programs frequently reinvest the collected revenue back into activities that help transition the entire company to low- carbon

OECD carbon pricing classification

The above-mentioned Implicit carbon price is a term defined in Internal Carbon Price, and is the same as the implicit • carbon price defined in OECD (OECD, (2013) Climate and carbon: Aligning prices and policies). It should be noted that these are different things OECD (OECD, (2013) Climate and carbon: Aligning prices and policies) — **Classification of carbon pricing Implied Carbon Price** Explicit carbon price (Those taxed on energy consumption rather than carbon (The price per ton is explicitly attached emissions. Items that require emission reduction costs to comply with to the carbon emitted) regulations and standards) Emission Regulatory allowance price Carbon tax Energy tax Other through emissions compliance costs trading

Table of contents

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

-1. TNFD Scenario Analysis	3-4
-2. Goal setting	3-7

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat	tional)
and reference parameters and tools	
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduction targets and investment	tion 2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re	ference
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Introducing advanced cases in Japan and abroad that can be used as a reference for considering ICP implementation

	Price setting				Implementation			Organiz struc		
Company name	Utilizing external prices (current)	Utilizing external prices (future)	Benchmarking of prices of other companies in the same industry	Internal Discussions on Decarbonizing Investments	Reference price	Partially reflected in investment standards	Internal fee	Establishment of operational system	Commitment from upper management and involvement of related departments	Refer ence
Askul	•		•	•	•			•		p.113
Astellas Pharma						•		•	•	p.114
AGC	●		•		●					p.115
KAO						•		•		p.116
Mitsui O.S.K. Lines		•			•					p.117
Taisei		•				•				p.118
Daiwa House REIT Investment					•					p.119
Nomura Research Institute							•			p.120
Fujitsu	•						•			p.121
Mitsubishi UFJ Financial Group					•					p.122

Introducing advanced cases in Japan and abroad that can be used as a reference for considering ICP implementation

	Price setting			lm	plementa	tion	Organiz struc			
Company name	Utilizing external prices (current)	Utilizing external prices (future)	Benchmarking of prices of other companies in the same industry	Internal Discussions on Decarbonizing Investments	Reference price	Partially reflected in investment standards	Internal fee	Establishment of operational system	Commitment from upper management and involvement of related departments	Refer ence
BMW AG							•			p.123
Groupe Renault		•			•					p.124
International Airlines Group		•			•	•				p.125
Microsoft							•	•		p.126
Philip Morris International	•					•				p.127
Safran	•	•			•					p.128
Saint-Gobain					•					p.129
Société Générale							•			p.130
Solvay S.A.		•				•				p.131
Tetra Pak	•				•		•		•	p.132
Unilever Plc	•				•					p.133
Volkswagen AG					•		•			p.134

The scope of applying ICP is expanding from visualization of CO2 emissions to capital investment and PPA in stages

①For re of use	eference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Target ran Scope 1 Scope 2		Domestic only	Domestic/		Group/ /Subsidiary
Pricing/Setting Methodology	ICP Pric suc		y:Prices are set base of LED lighting and elec							
Implementation	• Exp •	introduction of rend ② When making as lighting and air ICP and use it as	of CO2 reduction amo ewable energy at 10 di environmental invest conditioning, multiply a reference value to premium price from n	stribution c ments suc the expec promote e	enters nationw h as energy-sa ted CO2 reduce nvironmental	vide. aving ec ction by investr	quipment y installi nents	in logistion ng the eo	cs center quipmer	rs such nt by
Organizational structure, Future initiatives	pro The In f	e Sustainability Comm curement prices, and o ey predict that prices w iscal 2025, they plan	ittee regularly discus environmental investm <i>v</i> ill fluctuate in the futur to incorporate interr naking on environme	ent perform e as carbo <mark>al carbon</mark>	nance n prices may ri pricing into i i	ise as C nvestm	O2 reduc	ctions pro	gress.	
Introduction example			sidered as a means of n price provided by rer	-		ergy into	o distribu	tion cent	ers by ve	erifying

Setting investment standards to reduce annual 1 ton CO2 reduction cost to 100,000 yen or less, and utilize ICP for capital investment, etc.

			③Internal fee		Ta	arget range		Compar	ıy range	
Purpose	①For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1	Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use		-		application	-	-	only		omy	
					•	•				•
		Set price:100,000yen/t0	CO2 (Cost required to)	educe 1 ton	of CO)2 ner vear)				
Pricing/	• 10	CP Type : Implicit Price								
Method		Price setting methodology	y:Prices are set by st	udying socia	al trend	ds in carbon m	arkets.			
		Evaluate investments b	• • •	ductions fo	or each	h low-carbon	or high-	energy ef	ficienc	y
		project across Astellas'	ousiness units estment cost/annual gro	oonhouse a	as rodu	uction" is lowe	r than the	internal	standard	4
			00 yen, the plan will be	0				internal s	lanuaru	4
Impleme	entation F	Price Setting methodolog	v: Set by EHS/Corpora	ate Risk Mar	nademo	ent. a team sr	ecializino	in interna	al respo	nsibilitv
	a	t the Tokyo head office a	ind proposed to the Ch	nief Ethics a	nd Con	npliance Offic	er			5
		/lanagement of investme nvestment plans for Aste					•		•	
	ii ii	nvestment plans includ			-			-		
Organiz	ational	CO2 reductions nvestment approval: Dec	sision-making by ton	manageme	ont suc	ch as CEO C	STO CA) CEO e	atc	
structure initiat	tives	n 2019, as part of the To	yama Technical Cente	r's energy co	onserva	ation promotic	on activitie	s, insulati	ion (cov	
				•					-	
Introdu	uction a	innual CO2 reduction eff	ect was calculated to b	e 13.46 tCC)2, and	d the installation	on cost wa	as 1.06 m	illion yer	n. The
exan	1101(4)		n of CO2 reduction pe	r year was 7	′ 9,000	yen, which wa	as less tha	an 100,00	0 yen, s	so the
Introdu	uction ir	vrap) was installed on the prevent thermal energy lo	e boiler bodies of six b loss in the body. The en ect was calculated to b	oilers (2t-2/3 ergy saving be 13.46 tCC	8t-4 boi effect 02, and	ilers) in the se was analyzed d the installation	cond fern at the tim on cost wa	nentation ne of prop as 1.06 m	building osal, an illion yer	to id the n. The

Prices are set depending on the purpose, and ICP is widely used for M&A, capital investment, technology development, etc.

			③Internal fee		Ta	arget ran	ige		Compar	ny range	
Purpose of use	1)For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of application	Scope 1	Scope 2	Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
oruse	•			application	•	•			•		•
Pricing/ Method	Setting	-	en/tCO2 set depending on the nology development			l inves	tment, p	orice sett	ing for k	ousines	5
Impleme	inve		sting (carbon risk ma pital investment and					•••			S
Organiz structure initiat	ational carl , Future cou ives • Intro	oon costs into inves ntry in the future	ork was designed to k tment decisions for c simulation in 2020 a	arbon pric	ing, w	hich is	expect	ed to be	introduo	ced in ea	ach
Introdu exan	uction • Whe afte	ermined that it will be en investing in renewa r considering ICP, so	nanufacturing capita e profitable in the lor able energy in-house p o the investment was C Group companies	n g term ower gener decided a	ation e fter co	quipme nsider	ent in Tai ring oth	iwan, the er factor	NPV tur s as well	ned pos I	

Kao is conducting price increase and reflect them into investment decisions. ICP is utilized in sectors which accounts for majority of emissions

			Derticly, reflected in	③Internal fee		Та	arget rang	ge		Compai	ny range	
Purpose	①For refe	erence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of		Scope 2	Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use			•		application	•	•		•			
	/Setting dology	 ICP Pric equi 	· · · ·	γ:Price was set at 3,5 SBTi 1.5°C target. He								
Impleme	entation		itive within the refer The sum of the end	sions are made base rence year set for eac ergy costs reduced by ssions is calculated as	h item introducing	energy	/-saving	g equipr	nent and	the carb		
structure	zational e, Future itives		0 1	ital investments is mar vhich accounts for maj	0,				utilizes l	CP		
	uction mple	Тоус	ohashi Plant (schedul	plemented project inve ed for completion in Ma kW) at the Kashima Pl	ay 2023) ar							

Multiple prices are set depending on different time frames. ICP is applied to all investment projects related to the international shipping business

			③Internal fee		Та	arget range		Compar	ny range	
Purpose	①For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1	Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use	•			application	•	•				●
•	ICP /Setting Sett	Type : Implicit Price ting method : Adopts e axis From 2025 to 203	yen/tCO2, Setting mu IEA's popular carbon p 9:9,588yen/tCO2(6 ,813yen/tCO2(175U3	rice assum	ption. <mark>S</mark>		·		ng to th	e IEA
Implem		Assessing the protocol trading on the ma ICP is also applie	project approvals relate revenue and expense ofitability of new tech arket d to investment proje case-by-case basis	es mologies, "	taking	into account	the impa	ict of car	bon tax	tes and
structur	e, Future sce	nario analysis, with	ved as appropriate w reference to external national shipping suc	organizati	ons su	ch as the IEA				
	inve Iuction • The mple emis ben	stment decisions (e.g company determined ssions, that the econo efits of installing the	f ICP began in Septem ., introduction of LNG f that it would simultane mic benefits of GHG e equipment would ou for the investment w	ueled ships eously redu mission red utweigh the	s, introd ce fuel luctions e disad	luction of Wind costs through would be prop lvantages of i	l Challen energy sa perly eval	ger (rigid avings ar luated by	sail)) id reduc ICP, tha	at the

Source: CDP response (2023)

Utilize ICP for capital investment, technology development investment, and environmental impact reduction activities

				③Internal fee		Т	arget rar	ige		Compar	ny range	
Purpose	①For refere	nce	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1	Scope 2	Scope 3	Domestic only	Domestic/ Overseas	Head offico only	e Group/ Subsidiary
of use			•		application	•	•	•	•			•
Pricing/S Methode		ICP Setti		the IEA's price forecast, based on the IEA's NZE							orice afte	r 2025 will
Implemer	• ntation	2 P •	Convert the CO2 include it in retur romote investment The CO2 emissio converted into a	ation-related capital in emission reduction of n calculations when in decarbonization-re n reduction effect ex monetary amount an imental impact reduct	effect of eq making inv elated tech pected from d is used a	uipme vestme nology m the is one	ent inst ent dec / devel practic of the	isions opment al appli investm	t (Scope cation of nent perf	1, 2, 3) f the tech ormance	nnology indicat	r is tors
Organiza		•	Promote environm branches, and gro	ental load reduction ac up companies into mo nission costs to sales a	ctivities (TS netary value	A) by c es and	onverti establi	ng CO2 shing en	emitted I vironmer	by the he ntal mana	ad office	Э,
structure,	Future •	Price	es are to be reviewe	d once a year based o	on IEA proje	ections	-					
Introduc exam	• • ction	 ① In FY2021, it will be used to make investment decisions in renewable energy facilities and make investments ② It is assumed that this will lead to the promotion of the development of low-carbon construction materials such as carbon recycled concrete, and for 30 of the technologies that began research and development in FY2021, the CO2 reduction amount when put into practical use will be estimated and the ICP The CO2 reduction effect was visualized by converting it into monetary amounts 										

Utilize ICP in low-carbon promotion construction, investment decisions for target properties, and supplier selection

				③Internal fee		Т	arget ran	ige		Compar	ny range	
Purpose	①For refe	rence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of		Scope 2	Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use			•		application	•	•	•	•			
Pricing/ Method	•		price:10,000yen/tC0 Type:Shadow Price									
Impleme	entation	• ② G	In cases where G such as LED light applying ICP is ta the construction uidelines for investme Income and expe emissions of the lentification of risks re By selecting supp	tion to promote low cal HG emissions expec- ting and air condition then into consideration work ent decision making : nses are calculated to target property and a elated to future cost inco pliers with low emiss bon tax is introduced	ted to be r ning upgra on and use based on th re used as creases : ions, we a	educed des ca ed as a ne con s a refe im to r	n be ca refere version erence	alculate nce for n amou for inve	ed, the ar judging nt by app estment o	nount co the impl olying IC decisions	onverted ementat P to the s	l by tion of GHG
		N/A										
				arbon construction wor d to rent from tenant		•	•				ount wh	en the
Introd exar		 In F` facil inco 	Y2022, when ordering l <mark>ity, investment deci</mark>	g the installation of sola sions are made base Itiplying the amount	ar power ge d on the ca	eneratio apital i	on equip nvestn	oment at n <mark>ent yie</mark>	t DPL Na Id, whic	gareyam h is the a	mount	of

Nomura Research Institute's initiatives (Service, Japan)

Charging the "difference" between carbon and renewable energy by operational units in the headquarters. Charged carbon pricing is used to procure renewable energy and pay electricity bills

Purpose of use	①For reference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Target range ope 1 Scope 2 Scop	e 3 Domestic only	Compan Domestic/ Overseas	<u> </u>	ce Group/ Subsidiary ●
Pricing/ Method	/Setting • ICP	price:4,000yen/tCO2 Type:Internal Fee	2						
Impleme	hea entation • The	dquarters that utilize	ne difference between NRI Group data cente be saved for future i ty bills	rs.					ised to
Organiz structure initia	zational e, Future	ected by departments							
Introdu exan	uction nple • The	rnal sales of the Data (ter electricity bills, as v system of collecting	of approximately 1 bi Center Business Heac well as future renewab g levies on a departm to the decision to jo	lquarters (a po le energy (Pla lent-by-depa r	ortion of the colle nned to be used	ected funds I during pro	will be us curement)	ed for d	

Fujitsu's initiative (Service, Japan)

Charges for exceeding emission targets to compensate for the purchase of renewable energy certificates and investment in energy-saving equipment

				③Internal fee		Та	arget ran	ge		Compan	iy range	
Purpose	①For refer	ence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1	Scope 2	Scope 3	Domestic only	Domestic/O verseas	Head office only	Group/ Subsidiary
of use				•	application	•	•		•			•
Pricing/ Metho			price:4,000yen/tCO Type:Internal Fee	2								
Implem	entation	coll	ected from each bus ewable energy certifi If profits are gene is added to the a	vide emissions at fact siness unit in proport icates and investmen erated from activities nnual capital investm ibat global warming	ion to the t in energy that excee	excess /-savin ed the f	s is use g equi target e	ed to co pment, of 100,0	mpensat etc. 00 tons,	te for the	purchas that ar	se of
structur	zational e, Future itives			en reporting on interi inability managemen					on costs	and retu	urn on	
	uction mple	N/A										

Utilizing ICP in verifying investments and loans on whether such investments contributes to CO2 reduction

				③Internal fee		Та	arget ran	ge		Compan	iy range	
Purpose	①For refe	erence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of		Scope 2	Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use	•				application			•	•			
Pricing/ Method			price:4,400yen /tCO 9 Type:Shadow Price		CO2 using i	nternal	proprie	etary exe	change ra	ate of 110) yen/US	D)
Impleme	entation	con am inve	mpanies that make inv sidering costs and retu ount is multiplied by estment and loan de estments and loans,	urns, but if CO2 can b the ICP. By convertin cisions are made not	be reduced ng the cark only from	due to bon cos the pe	o inves sts inc erspect	tment a urred ir ive of tl	and loans nto reven he effect	s, the rec iue supp	duction lements	,
Organiz structure initia		N/A										
Introd exar		ma	incorporating an impac de in advanced funds 000 tons of CO2 redu	s that conduct impac	t evaluatic	ons, an	d the ir					

ICP was introduced to comply with regulations and establish a system to regularly review price validity

Purpose	①For reference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of	Target range ope 1 Scope 2 Scope 3		Company range Domestic/ Head off Dverseas only	
of use			•	application	• • •	•		•
Pricing/So Methodo	• etting • Pric ology •	Set by combining e②(SCOPE3(Down Based on the pena	stream)) :0-15,971ye g the reduction cost (stream)) :0-75,862y alty costs of the EU Fle issions is set at 475 e	curve and the en/tCO2(0-4 eet Regulation	EU-ETS external 75 euro/tCO2) , the price tag for in	vestments	in technical m	neasures
Implemen	proj	ects across the compa Set g-CO2/km tar vehicles Example : BEV C	ent Dynamics technolo any g et line and use bon O2 emissions are 0g/k ie BC of conventional o	us/malus sys m, which provi	tem in business c des a large bonus	ase (BC) o that contrib	calculations f	or all
Organiza structure, initiativ	Future • The a		on internal price is realized aptation of steering eff	• •		in the even	nt of major cha	nges in
Introduc examp	etion ble • Dec app	,792 electrified vehicle icles to 18.1% of tota	blogy as standard in all es were sold (BEV: 21 al deliveries in the re on-free technology a	5,752, PHEV: 2 porting 12 mc	218,040), <mark>increasi</mark> i onths	-		

Source: CDP response (2023)

Utilizes ICP for vehicle verification and industrial equipment investment. The company plans to introduce ICP for parts and material supply in the future

			③Internal fee	Т	arget range		Compar	ıy range	
Purpose	①For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	1 Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head offic only	e Group/ Subsidiary
of use	•			application •	• •	•			
	 ICP Setting dology dology 	P Type : Shadow Price ting method : Prices in ernal factors such as e Vehicle projects: Industrial equipm and CO2 emissio ernal Price set to reduce	n line with short- and m nergy market evolutior including in-use emi ient: considering mu n allowances re vehicle CO2 emissio	nedium-term forecan and regulations. ssions regulation Itiple factors suc	ns, especially h as expected	CAFE ar change	nd CO2-ro s in the e	elated ta energy i	axes market
Implem	• entation • Car •	use phase, as we value chain bon Price based on El	technical component Il as decisions regard J-ETS CO2 allowance COI (return on investr ufacturing plants	ding automotive	materials and	compon	ents thro	oughou	-
structur	e, Future in tl		U-ETS allowances is p n through efforts to rec						
exai	uction	Integrated into the energy recovery sy ernal Price set to reduc	J-ETS CO2 allowance decision-making proce (stems), which require the vehicle CO2 emission ce for verification or dis	ess for the Pitesti d 49.51 million yei ons.	n (310,000 euro	os).			an

Source: CDP response (2023)

ICP is used in several business areas. Prices are set by combining current prices and future forecasts

		②Partially reflected in	③Internal fee		Target range		Compar	ny range	
Purpose of use	①For reference	investment standards	(Budget allocated within the company)	Scope of application	Scope 1 Scope 2 Sc	cope 3 Domes only	tic Domestic/ Overseas	Head office only	e Group/ Subsidiar
	•	•			•		•		•
Pricing/Se Methodo	etting • Pric blogy • • Pric	Price with the Carb ce② (2022-2030 COR Set based on mod ce③ (offset) :1,597	UK Government Avia oon Price forecast SIA Price): 1,917 - el	tion Foreca 3,194 yen/1 -28 euro/tC	st as a reference t CO2 (12-20 eur	e, combining ro/tCO2)		ETS Allo	owance
Implemen	tation • Use	e ICP for decision-ma ed to share operational ed in investment decisi	decisions such as fue	el planning a	and aerial refueli	-	projects		
Organiza structure, initiativ	tional • Flee Future dec ves • Sus	oup airlines apply carbo et planning teams use isions stainability team integra s and opportunities	the latest carbon price	es and price					
Introduc examp	col	en when IAG or operati laboration with key p jects to meet validate	artners, conduct due	e diligence					

Source: CDP response (2023)

Collects carbon tax according to each divisions' emission (Scope 1, 2, 3) and use the collected funds for decarbonization projects

①For re Purpose of use	eference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Target Scope 1 Sco		Domestic only		ny range Head offic only	
Pricing/Setting Methodology	aro • •	Emissions from bu	e is adopted compar d emissions: 1,956ye siness trips: 13,043ye ns other than the abo	n/tCO2 (15 n/tCO2 (10	USD/tCO2 0 USD/tCO) 2)	-	in over 1	00 coui	ntries
Implementation		Collected funds (than LinkedIn) operat ected according to t Carbon Fee Fund) a energy and technol	he emissic re been us	ons of each ed as ince	n division (of the bu	usiness o	division	1
Organizational structure, Future initiatives	• Wo	evaluate carbon price rk with Company's fin mpany's Environmen	nance department to	_	CP Price c	reation and	d collect	ion fund	s throu	ıgh
Introduction example	· · ·	Carbon removal pu Innovation projects Multiple projects re	und was used to supp ity (7,083,737 MWh) irchases in 9 countries that are part of the Al lated to carbon and en	s (removed I for Earth p nvironmenta	over 1.4 m rogram al justice	·				

Source: Since responses regarding ICP were not published in FY2023, refer to CDP responses from last year (FY2022). Exchange rate: 1 dollar 130.43 yen, 1 euro 140.75 yen (using exchange rates as of the end of January 2023)

Collects information on carbon taxes and carbon regulatory risks in each country to set prices, and incorporate ICP into IRR

Purpose of use	①For reference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Target range Scope 1 Scope 2 Scope 3	Domostia Domostia		e Group/ Subsidiary
Pricing/ Method	ICl Pri Setting dology	 country where may Assign carbon emissions Classify into carbon country (e.g., wheth future) Multiply each contry's weighter 		total carbo s are locate untry by div to the risk s are becom nsity by th on	n weight of Scope 1 ed viding each country's level of carbon taxe ning more active or pla e country-specific r	emissions by the s and carbon re- anned to be introc risk carbon price	total carb gulations duced in th assigne	oon in each he near <mark>d to each</mark>
Impleme	entation eff	corporating ICP into IF ficiency improvement vestment policies						
Organiz structure initia	e, Future str	egrate the Shadow Car uctural reductions in ca pjects, including four pro	rbon emissions in 202	2 and supp	ort the approval of 12	ation of project pr 21 carbon emissio	oposals fo n reductio	or on
Introdu exar	uction · As nple spa	ocated approximately 2. lucing overall carbon en part of the ZCT program ace, including an electri ctrification with heat pu	nissions of Manufactu n, the Italian Manufac fication plan. A variety	ring facilitie turing site a of technolo	s by at least 7.5% in a approved the establish ogies will be operation	2022 versus 2021 hment of a combinal by 2025, includ	l. ned soluti	on

Source: CDP response (2023)

①For ref of use	ference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Scope 1 S	get rang Scope 2 S		Domestic only	Compar Domestic/ Overseas	ny range Head office only	e Group/ Subsidiary
Pricing/Setting Methodology	• ICP • Set	price:11,978yen/tCC ? Type:Shadow Price ting method: Set bas ency), I4CE (Institute	ed on publications a					e IEA (Int	ernatior	al Energ	ду
Implementation		construction, and e lizing ICP in supplier Require informati	o investment return cal energy efficiency invest	ments mitted to p	produce	goods	and s	ervices,			
Organizational structure, Future initiatives	N/A										
Introduction example	• It ha	is connected to project as been decided to intr of 2021	•		•	•					

Source: CDP response (2023) Exchange rate: 1 dollar = 147.50 yen, 1 euro = 159.71 yen (using exchange rates as of the end of January 2024)

Setting ICP by application (R&D, energy investment)

①For ref of use	erence	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company)	Scope of application	Target range Scope 1 Scope 2 Scope Image: Comparison of the second seco	3 Domestic only	Compan Domestic/ I Overseas	e Group/ Subsidiary ●
Pricing/Setting Methodology	•	•	rices for each purpo (100 euro/tCO2):E (200 euro/tCO2):R	nergy inve	stment			
Implementation	•	esting in research and Research and deve 70 countries in wh	1,2 for all entities in d development of br elopment : ICP cover hich they operate in supporting low-car	the 70 cou eakthroug s all CO2 e	ntries in which it o h low-carbon techr missions in Scope	nologies 1, 2, and	_	n the
Organizational structure, Future initiatives	N/A	F						
Introduction example	the • Add	ed to apply hydrogen development of a new ling energy efficiency e a using internal carbor	r technology to prehea equipment (heat recov	t raw mater	ials			C C

Source: CDP response (2023) Exchange rate: 1 dollar = 147.50 yen, 1 euro = 159.71 yen (using exchange rates as of the end of January 2024)

By taxing emissions using ICP, the group achieved significant reductions

①For re Purpose of use	ference	②Partially reflected in investment standards	③Internal fee (Budget allocated within the company) ●	Scope of application	Target range Scope 1 Scope 2 Scope 3	Domostio Domosti		e Group/ Subsidiary ●
Pricing/Setting Methodology		Set a fixed price ar	2 (25 euro/tCO2) ce to the entire compa nd apply it for more tha n business and service	an 10 years (siness unit, etc. (u	niform pri	ice)
Implementation	 Carbon tax will be imposed using ICP based on GHG emissions in Scope 1, 2, and 3. Uses a system in which a carbon tax is imposed on group entities annually according to GHG emissions. Tax revenue will be used as a reward for the most outstanding environmental impact reduction initiatives within the group. 							
Organizational structure, Future initiatives	• Invo	olving each business u	nit and service unit, <mark>t</mark> r	e pricing ha	as been raised from	n 10 euros to 25 e	euros in 20	021
Introduction example		oduced an award systenounced, more than ha				•		

Source: CDP response (2023) Exchange rate: 1 dollar = 147.50 yen, 1 euro = 159.71 yen (using exchange rates as of the end of January 2024) The price is set by 3 different time frames (short, medium and long). ICP is incorporated into the estimated financial profit

			Dartially roflected in	③Internal fee		Ta	rget range		Compar	ny range	
Purpose	①For refe	rence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	·	Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head offic only	e Group/ Subsidiary
of use			•		application	•	• •	•			
			price:Set multiple pri ementation.	ces depending on tim	e axis (shor	rt term/n	nedium term/lo	ong term)	and Usa	ge for	
Pricing/ Method		•	· · · ·	: ETS forward price ears) : 15,971yen/tC(os/tCO2	2) ⇒ Used for	capital i	nvestme	nt profi	tability
		• ICP	Long-term (2050) : calculation in por Type : Implicit Price, S		0 euros/tCC	02) ⇒ U s	sed as a shac	low pric	e for carl	oon foo	tprint
Implem	entation		is incorporated into When used for cap profitability stand	estimated financial ital investment profita ards will not be mad	bility analys <mark>le.</mark>	is, inve	stments that	do not n	neet Solv	/ay's	
		•		does not have an ac stment is good whe							
structure	zational e, Future tives	in ke	ainable Portfolio Mana y processes such as s gers and acquisitions	č (,						•	
Introd exar	uction	 Solvay in Italy reduced its CF4 emissions by 560,000 tons of CO2 equivalent and 460,000 tons of CF4 in 2019 through innovative clean technology developed in-house and commissioned in 2019. The implementation of the project has been decided based on the application of ICP 									

Source: CDP response (2023)

Collects internal fees using ICP while formulating air transportation policies to reduce CO2 emissions

		⁽²⁾ Portially reflected in	③Internal fee		Target ra	nge		Compa	ny range	
Purpose	①For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1 Scope	2 Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use	•		•	application	•	•		•	Uniy	
Pricing/S Method		change impact.Even if the actual aPrice⁽²⁾: 4,791 yen/tCO2	e throughout the compa amount is lower, the mi 2(30 euro/tCO2) ed worldwide. Introduci	ny. Refer t nimum am	ount is set at	1,408 ye	en/ton (10) euro/tor	ı).	
Impleme	• entation •	Confirm the impact on a equipment, etc. (utilizing A new policy on Air Tra recommendations are ig collect a fee to invest in	Price①) nsportation sets Air T gnored and air cargo	ransporta is used, D	tion only in levelopment	busines	s critical	situatio	ns, and	if the
Organiz structure initiat	, Future	Managing Director and Vice President of Capital Equipment for Development and Service Operations (DSO).								
Introdu exam		 Carbon costs improved financial return on investment by 1-2 years The use of air cargo was significantly reduced as a result of establishing internal fees when using air cargo 								air

Source: CDP response (2023)

Utilizing ICP to reflect on investments decisions and establishing sustainability investment funds

		Dertially reflected in	③Internal fee		Target range		Compar	ny range	
Purpose	①For reference	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	ope 1 Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/ Subsidiary
of use	•			application	• • •		•		•
Pricing/S Method	Setting lology	et price:9,853 yen/tCO P Type:Shadow Price ice setting methodology		orld Bank Car	bon Price Report.				
	• Re	both with and wit	ecision making. ntation of project fina hout ICP, for all proje mately 80% of total ca	cts with capi	ital investments o				
Impleme	entation	Use of ICP is reco efficiency project	ommended for all nor	-capital inve	stments, especia	-			
	• Es	tablish a fund	Seventh Generation br	ands have <mark>es</mark>	tablished their ov	vn susta	inability	investm	nent
Organiz structure initia	e, Future CC	setting carbon prices, formittee on Carbon P D2 by 2030, which is ne an to review the effect	Prices Report. (The reperters of the rep	oort recomme goals of the F	nds increasing the Paris Agreement.)	carbon p	rice from	evel \$40 to \$	\$80/t-
	 Ben & Jerry's imposes an internal carbon tax on every 1Mt of GHG emissions from farm to landfill. Worked v farmers to implement strategies to reduce GHG emissions, including manure separators that turn methane i cow bedding Implemented energy-saving measures such as installing solar panels at an ice cream factory in Vermont and installing electric vehicle charging stations at the facility 							into	

Source: CDP response (2023)

Introduced ICP to achieve reduction targets in line with CO2 emissions regulations, collecting penalties for excess amounts

			Doutially reflected in	③Internal fee		Т	arget range		Compar	ny range	
Purpose	1)For refe	rence	②Partially reflected in investment standards	(Budget allocated within the company)	Scope of	Scope 1	Scope 2 Scope 3	Domestic only	Domestic/ Overseas	Head office only	e Group/Sub sidiary
of use				•	application	•	• •		•		•
Pricing/s Method		• Pric	Reviewed annually e②(SCOPE3(Down Fixed Price detern	31,942 yen/tCO2(20 y based on target achi stream)):75,862 ye nined as a penalty for bected to change as w , Internal Fee	evement ar n/tCO2(47 exceeding f	id adju 75 euro	o/tCO2)				
Impleme	entation	• If th	Targets newly reg	ger cars within the EU gistered passenger ca a penalty of 95 euros	ars that me	et exh	aust gas perf				ometer
Organiz structure initiat	e, Future		is part of an integrate CO2 emissions regula	ed management system ations	n that mana	ages gr	oup-wide CO2	activities	required	to comp	bly with
Introdu exan		N/A									

Source: CDP response (2023)

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re information	
	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111 2-136
2-4-3. List of companies that have introduced ICP in Japan	2-130

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Biotechnology, Healthcare, Pharmaceuticals Sector (1/2)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Astellas Pharma		Implicit Price	100,000 yen	Targets Set	 Targets Scope1, 2 Applicable to all business divisions of Astellas Pharma, including pharmaceutical technology, drug discovery research, and sales The Enterprise Risk Management, EHS team collects a list of investment plans from each facility, including estimated cost, estimated CO2 savings, payback period, and CO2 savings to drive capital investment
Otsuka Holdings	-	Shadow Price	5,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments Calculates the cost effectiveness of cogeneration systems, etc. and makes investment decisions
Ono Pharmaceuti cal	Biotechnolog y, Healthcare, Pharmaceuti cals	Implicit Price	8,096yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments Use internal carbon pricing as one of the decision-making factors when purchasing energy-intensive equipment, such as air conditioning equipment, and when planning investments in renewable energy
Shionogi & Co.		Shadow Price	10,000- 16,523 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Make investment decisions considering of carbon value when introducing or switching to electricity derived from renewable energy Promote capital investment that takes carbon value into consideration to improve the outcome CO2 reduction. Mainly in facilities and equipment which emits large amount of CO2, such as factories and research laboratories

Biotechnology, Healthcare, Pharmaceuticals Sector (2/2)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Daiichi Sankyo		Shadow Price	1,000-3,000 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, meet stakeholder expectations, and reduce S/C emissions Utilize ICP as a reference when making investment decisions for the introduction of high-efficiency lighting equipment in factories. Consider prices based on trends in the domestic emissions trading system The price is set between 1,000 and 3,000 yen, with 2,000 yen being the average price
Sumitomo Pharma	Biotechnolog y, Healthcare, Pharmaceuti	Implicit Price	2,800,000 Yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities Utilize ICP for investment decisions by setting an "implicit price" considering the cost of replacing conventional equipment with the CO2 reduction when replacing high-efficiency equipment with planned LED conversion or replacing aging equipment
Takeda Pharmaceuti cal	cals	Implicit Price	1,100yen	Targets Set	 Targets Scope1, 2, 3 (upstream) Introducing ICP company-wide to guide GHG regulations, address stakeholder expectations, change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities
TSUMURA & CO.		Shadow Price	11,943- 33,175 yen	Unable to confirm	 Targets Scope1, 2 ICP is used to make investment decisions, enhancing energy efficiency technologies and equipment, as well as to select electric power companies
Terumo		Shadow Price	10,000 yen	Targets Set	 Targets Scope1, 2 It aims to introduce ICP on trial basis in 2021 and to be implemented into organization-wide system in 2022 Apply ICP to self-investment in solar power generation equipment and capital investment in equipment with low return on investment such as LEDs

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024)

Food, Beverage, Agriculture related Sector (1/2)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Asahi Group Holdings		Shadow Price	11,846- 17,111 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments Refers to the carbon price assumed by IEA NZE
Ajinomoto	Food, Beverage, Agriculture related	Shadow Price	1,500-25,000 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations ICP used in group-wide transition risk scenario analysis to visualize future carbon tax hikes
Kikkoman		everage, Implicit Price griculture	6,500yen	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Pricing is calculated from the average of the actual price of renewable energy for electricity required for future reductions and the price of offset certificates in the heat field
Kirin Holdings		Shadow Price	7,000yen	Targets Set	 Targets Scope1, 2 Utilize ICP information as input information when formulating the Kirin Group Environmental Vision 2050, and reflect the results of scenario analysis, including impact assessment, in environmental strategies Furthermore, the ICP was introduced into the investment decision framework for environmental investments with the main purpose of reducing GHG emissions, with the aim of accelerating environmental investments Prices are set based on the IEA's carbon price predictions in the literature for each country

Food, Beverage, Agriculture related Sector (2/2)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Suntory Holdings	Food, Beverage, Agriculture related	Shadow Price	8,000yen	Targets Set	 Targets Scope1,2,3 Introducing ICP to change internal behavior, promote low-carbon investments, meet stakeholder expectations, and engage suppliers Used for business decisions such as estimating the financial impact of future carbon tax increases, and for determining the profitability of solar panels and energy-saving equipment investments
Sapporo Holdings		Implicit Price	6,000yen	Committed (within 2 years)	 Targets Scope1, 2 Incorporated into capital investment payback period evaluation and used for investment decisions including purchasing decisions on renewable energy electricity Used to calculate the amount of impact on transition and used in decision-making for disclosure of transition plans based on TCFD recommendations
The Nisshin OilliO Group		Shadow Price	10,000 yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to guide greenhouse gas regulations, change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities When calculating the profitability of capital investment, the CO2 reduction benefit (CO2 reduction amount x carbon price) is added to the fuel cost reduction, etc., and evaluated, increasing the benefits of equipment introduction and shortening the equipment payback period
Nisshin Seifun Group		Shadow Price	5,000yen	Unable to confirm	 Targets Scope1, 2 Targets capital investment and M&A Reflecting ICP into "long-term CO2 emission reduction plan" by 2050
FUJI OIL HOLDINGS		Shadow Price	10,000 yen	Targets Set	 Targets Scope1, 2 Used as a reference value for investment decisions such as facility purchases
Meiji Holdings		Shadow Price	5,000yen	Targets Set	 Targets Scope1, 2 It is mandatory to calculate the CO2 reduction effect and economic effect using an internal carbon price for projects with investment amount over 10 million yen

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024)

Fossil fuel Sector, Infrastructure related Sector (1/3)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
INPEX	Fossil fuel	Shadow Price	4,004-16,668 yen (27.15- 113USD* ¹)	Unable to confirm	 Targets Scope1, 2 Introducing ICP to perform stress test investments Applying ICP as part of economic evaluation of existing and potential future projects Prices are reviewed annually in line with IEA WEO carbon prices
Osaka Gas		Shadow Price	4,000-18,000 yen	Unable to confirm	 Targets Scope1, 2, 3 Utilizes ICP to understand the financial impact of climate change risks on new or existing investment projects and evaluate countermeasures and their effectiveness
Kumagai Gumi		Shadow Price	2,200-23,000 yen	Targets Set	 Target Scope2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and meet stakeholder expectations Established a carbon price specifically designed to promote energy conservation of electrical equipment in the head office building, and applied ICP to evaluate profitability
Shimizu Corporation	Infrastructure related	Shadow Price	10,500- 18,200 yen	Targets Set	 Targets Scope1, 2, 3 (downstream) Introducing ICP to promote energy efficiency, identify and utilize low-carbon opportunities Calculate the cost-effectiveness by dividing CO2 emission reduction cost (administrative activity expenses and research and development expenses) by the carbon price
SEKISUI CHEMICAL		Internal Fee	30,000 yen*²	Targets Set	 Targets Scope1, 2 Introducing ICP to guide GHG regulations, change internal behavior, promote energy efficiency, and promote low-carbon investments Introduced an "Environment-Contributing Investments Promotion Measures" in which when business divisions make capital investments, the head office bears the cost according to the amount of CO2 emissions reduced Verifying life cycle GHG emissions during building operation and cost effectiveness of ZEB technology development investment under Scope 3/Category 11

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024) *1 : 1 dollar = 147.50yen (using exchange rate as of the end of January 2024) *2 : Since no description equivalent to ICP unit price (yen/tCO2) could be found in the CDP response for FY2023, refer to the amount

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Sekisui House		Shadow Price	10,000 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior Applying ICP to increase employees' sense of ownership to climate change measures and utilize them in investment decisions for decarbonization
Taisei Corporation	Infrastructure related	Implicit Price	8,000yen	Targets Set	 Targets Scope1,2,3 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and reduce supply chain emissions Utilize ICP for the following purposes. (1) Convert the CO2 emission reduction effect from equipment introduction and reflect it in return calculations when making investment decisions, (2) Calculate the CO2 emission reduction effect expected from practical application of technology and use it as one of the investment performance indicators, (3) Head office/branch/group Convert the CO2 emitted by the company and set environmental management indicators that relate it to CO2 emission costs
Daiwa House Industry		Shadow Price	4,000yen (Scope1,2) 20,000yen (Scope3 downstream)	Targets Set	 Targets Scope1, 2, 3 (downstream) Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations Utilizing ICP to consider priorities for energy-saving investments at facilities across the group Established an "Environmental IRR" system that calculates IRR by setting ICP unit prices for real estate development and calculating CO2 reduction value in cash flow

Infrastructure related Sector (3/3), Manufacturing Sector (1/12)

Company	Sector	ICP Type	Set price (tCO2)	SBT Certified	Detail
Toda Corporation		Shadow Price	5,000-15,400 Yen	Targets Set	 Target Scope1 Introducing ICP to change internal behavior, guide GHG regulations, and meet stakeholder expectations ICP is used to see if the increased costs of adopting low carbon fuels (e.g. BDF) are justified from a carbon price perspective
Daito Trust Construction		Shadow Price	10,000 Yen	Targets Set	 Targets Scope1, 2, 3 (upstream) ICP is set when evaluating the economic efficiency when considering the introduction of renewable electricity and switching from gasoline-fueled vehicles to low-carbon vehicles
Sumitomo Mitsui Construction	Infrastructure related	Shadow Price	8,567yen	Targets Set	 Target Scope2 Making investment decisions that consider the profitability of business income and expenses in consideration of ICP and promote investments that contribute to reducing CO2 emissions Based on the predicted future CO2 price (USD) in developed countries shown in the 2021 World Energy Outlook by the IEA, set in yen considering exchange rates
Mitsui Fudosan		Shadow Price	5,000yen	Targets Set	 Targets Scope1,2,3 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, and meet stakeholder expectations ICP is used to obtain approval for business plans for new properties in all business types and regions, including office buildings, retail, and logistics. It will also be used to raise employees' awareness of reducing CO2 emissions and to formulate and consider equipment plans that will lead to reductions in CO2 emissions
JVC KENWOOD	Manufacturing	Shadow Price	2,500yen	Unable to confirm	Targets Scope1, 2Introducing ICP to change internal behavior

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
LIXIL		Shadow Price	1,575-13,650 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and reduce supply chain emissions
SUBARU	Manufacturing	Shadow Price	6,000yen	Unable to confirm	 Targets Scope1, 2 When acquiring certain amount of tangible fixed assets, the company report CO2 reduction outcome of introduced equipment as a cost reduction effect and include it in the criteria for making capital investment decisions
SUMCO		Shadow Price	2,700yen	Unable to confirm	 Targets Scope1, 2 Targeting investments that are thought to have an impact on carbon emissions (equipment renewal, expansion, etc.), the impact amount based on ICP can be evaluated together with benefit calculations at the time of investment planning and can be used as a reference for investment decisions
тото		Shadow Price	15,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations. ICP utilized for large-scale capital investments that involve an increase or decrease in CO2 emissions
Aisin Corporation		Shadow Price	11,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, and promote low-carbon investments ICP utilized for investment decisions in energy saving and renewable energy equipment investment Review prices as appropriate while monitoring market trends and progress towards climate change targets

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Advantest		Shadow Price	3,000- 8,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities Applied to decision-making for introducing renewable energy
lbiden	-	Shadow Price	4,000yen	Unable to confirm	 Targets Scope1, 2 Decarbonization using ICP is added to a decision-making factor when considering capital investment, Prices are set once a year considering EU emissions futures prices
Oji Holdings	Manufacturing	Shadow Price	16,900 yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and guide GHG regulations. Used to raise awareness among all executives and employees about reducing GHG emissions related to climate change issues
Omron		Implicit Price	1,386yen	Targets Set	 Target Scope2 Utilizing ICP to select electric power companies Prices are set based on the market transaction price of non-fossil certificates
Kawasaki Heavy Industries		Internal Fee	2,000yen	Committed (within 2 years)	 Targets Scope1, 2 Plans to promote investment in hydrogen business through ICP operation

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Kioxia Holdings		Internal Fee	5,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior Use ICP to drive investment in reducing greenhouse gas emissions within your company ICP is used as a tool to introduce measures to reduce greenhouse gas emissions when it is difficult to make decisions using the traditional CAPEX method when preparing a budget
Canon		Shadow Price	24,000yen	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to promote energy efficiency. ICP is used for investment decisions regarding energy saving related capital investment
Kyocera	Manufacturing	Shadow Price	1,607- 3,278yen	Targets Set	 Targets Scope1, 2 ICP is used to comprehensively judge electricity prices and the amount of environmental impact associated with CO2 emissions and select a power purchaser
Kokuyo		Internal Fee	890yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to identify and utilize low-carbon opportunities Carry out a forest conservation activity called the "Yuinomori Project", which covers 4 million yen in thinning costs every year and has absorbed a cumulative total of 67,390 tCO2 over 15 years. This figure is used as a reference when setting ICP prices
Konica Minolta		Implicit Price	1,000- 20,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments and guide GHG regulations ICP is used for investment decisions towards decarbonization and renewable energy

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
					 Targets Scope1, 2 Introducing ICP to change internal behavior and promote low-carbon investment.
GS Yuasa		Shadow Price	8,600yen	Unable to confirm	 Presenting the results of a comparative study that takes ICP into account regarding over a million-yen scale capital investment during deliberation
					 Used in investment decisions for installing solar power generation equipment
					Considering changing prices depending on social conditions
Sumitomo		Shadow	10,000yen	Committed (within 2 years)	Targets Scope1,2,3
Rubber Industries	Manufacturing	Price			 ICP is used as criteria for investment decisions aimed at reducing CO2 emissions
			1,500-	Tarrete Set	Target Scope2
Seiko Enson		lucu lisit Duiss			 Introducing ICP to change internal behavior, guide GHG regulations, and meet stakeholder expectations
	eiko Epson Implicit Price	10,000yen	Targets Set	 ICP is used as a standard when deciding to invest in environmental measures, such as the appropriate installation of solar power generation equipment at business sites 	
					Target Scope2
Sony Group		Shadow Price	5,774yen	Targets Set	 Introducing ICP to promote low-carbon investment and formulate carbon offset budget.
					ICP is used as a basis for deciding whether to introduce renewable energy at business sites

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Daikin Industries	Manufacturing	Shadow Price	10,000yen	Unable to confirm	 Target Scope1 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations. When constructing or renewing factory equipment, low-carbon investments are decided by considering the CO2 emission reduction effect compared to ICP
Taiyo Yuden		Shadow Price	10,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to promote energy efficiency ICP is used in investment decisions for energy-saving measures aimed at achieving absolute greenhouse gas emissions reduction targets
DISCO		Internal Fee	1,870yen	Unable to confirm	 Targets Scope1,2,3 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, meet stakeholder expectations, and reduce supply chain emissions. Reduction targets are set for each department, and corporate currency called "Will" is given to employees as an incentive depending on the degree of achievement, which is partially reflected in actual bonuses
Denso		Internal Fee	5,000yen	Targets Set	 Targets Scope1, 2, 3 (upstream) The net present value (NPV) and internal rate of return (IRR) of capital investment are calculated by adding the amount of CO2 reduction and the value calculated from ICP, with the energy saving effect as a positive factor and the investment amount as a negative factor

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Tokai Rika		Shadow Price	16,000yen	Unable to confirm	 Targets Scope1, 2 When calculating the payback year for CO2 reduction investments at domestic bases, 16,000 yen per 1t-CO2 investment effect is deducted
Tokyo Electron	-	Shadow Price	28,221yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities ICP is referred to as a KPI when discussing and determining return on investment at internal capital investment councils, budget councils, and board meetings
Toyota Motor	Manufacturing	Implicit Price	50,000yen	Targets Set	 Targets Scope3 Introducing ICP to change internal behavior and identify and utilize low-carbon opportunities Introducing ICP to help reduce CO2 emissions from new cars in situations where compliance with regulations is required
Toyota Industries		Internal Fee	18,400yen* ¹	Committed (within 2 years)	 Target Scope2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and guide GHG regulations Consider ICP in capital investment and operating electricity costs due to the introduction of renewable energy such as solar power generation equipment

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Nabtesco		Shadow Price	29,039yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency and promote low-carbon investments ICP is used to examine the CO2 reduction effect of introducing solar power generation equipment to domestic factories
NSK	Manufacturing	Shadow Price	15,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments To promote company-wide environmental investment that takes profitability into consideration, investment decisions are made based on the adjusted investment return amount, converting the CO2 reduction effect into monetary value and visualizing the degree of contribution to profits (Does not apply to decisions regarding procurement of available energy) Price is provisionally set based on the carbon tax predicted by the IEA
Niterra		Internal Fee	10,000yen	Unable to confirm	 Targets Scope1, 2 A fee is collected based on the amount of CO2 emitted from each business office in Japan, and the collected amount is used to invest in renewable energy equipment and CO2 reduction equipment through an internal environmental fund
Noritz		Shadow Price	7,000yen	Unable to confirm	 Target Scope2 Introduced to promote investment in low-carbon and energy-saving equipment to reduce CO2 Prices are set by referring to IEA WEO2020 prices

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Panasonic Holdings		Shadow Price	6,000yen	Targets Set	 Targets Scope1, 2 ICP is introduced to encourage operating companies to introduce renewable energy equipment such as energy-saving equipment and solar panels while maintaining economic rationality into the future
Hitachi Construction Machinery	-	Shadow Price	14,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments ICP is used in investment decisions to promote capital investment that contributes to CO2 reduction
Hitachi		Shadow Price	5,000- 14,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP as a strategy to promote low-carbon investments in factories and offices Prices are set taking into account the 2030 carbon tax and carbon trading price
Hitachi High- Tech	Manufacturing	Shadow Price	14,000yen	Unable to confirm	 Targets Scope1, 2 The amount of energy saved in electricity, gas, fuel, etc. due to capital investment is defined as the amount of CO2 emission reduction, multiplied by a hypothetical carbon price, and converted into a monetary amount. Used to add the CO2 emission reduction effect to the original investment effect and raise the priority when selecting equipment
Fujikura	_	Shadow Price	6,500yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments. Using ICP to measure the cost-effectiveness of renewable energy implementation to implement transition plans
Fuji Seal		Shadow Price, Implicit Price	14,300yen	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and guide GHG regulations

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Fuji Electric		Internal Fee	3,000- 15,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency and promote low-carbon investments
FUJIFILM Holdings		Shadow Price	11,000- 12,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and guide GHG regulations ICP is used to identify risks related to increases in CO2 emissions and make investment decisions in sectors
Furukawa Electric	Manufacturing	Shadow Price	10,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior and promote low-carbon investments Visualize the effects of each department's efforts to achieve greenhouse gas reduction targets and the difference between greenhouse gas reduction targets and actual results as a carbon price
Bridgestone	manalaotaning	Shadow Price	13,200yen	Committed (within 2 years)	 Targets Scope1,2,3 Introducing ICP to promote energy efficiency and promote low-carbon investments Calculate the return on investment, including CO2 emission costs due to carbon pricing, and use it as a basis for determining investment profitability The carbon price for CO2 emission costs is set as appropriate, taking into account the business characteristics and regional circumstances of each business division, and the common default value that serves as a reference is updated once a year
Mabuchi Motor		Implicit Price	8,000- 10,000yen	Unable to confirm	 Target Scope2 Introducing ICP to change internal behavior, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, and develop carbon offset budgets

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Mitsubishi Electric		Internal Fee	51,938 yen* ¹	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments The goal is to invest 0.15% of factory shipments as environmental investment at each production site (all domestic factories and major overseas factories). At the head office, we compile the total investment and CO2 emission reduction results (theoretical values before implementation, actual values after implementation), and provide support to ensure that each production base is committed to environmental investment and CO2 emission reduction
Murata Manufacturing		Shadow Price	7,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Used in decision-making for energy savings and renewable energy investments
Meidensha	Manufacturing	Implicit Price	15,000 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations Promote the introduction of energy-efficient equipment by considering GHG emissions over the life cycle in ICP evaluations during capital investment with the goal of reducing GHG emissions by 30% in 2030 (compared to FY2019)
					 Internal prices are set taking into account the Ministry of the Environment and IEA's 1.5°C scenario, "benchmarks from other companies," etc
Yamaha		Shadow Price	14,000 yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments Utilize ICP in all capital investment decisions
Yamaha Motor		Shadow Price	9,000yen	Unable to confirm	 Targets Scope1, 2 ICP is used as one of the evaluation criteria for energy-related capital investment. Consider CO2 reduction when deciding on capital investment priorities

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024) *1 : Since no description equivalent to ICP unit price (yen/tCO2) could be found in the CDP response for FY2023, refer to the amount

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Yokogawa Electric		Implicit Price	1,000yen	Targets Set	 Target Scope2 When considering capital investment and clean energy introduction plans, convert the expected increase or decrease in GHG emissions into monetary amounts and reflect it in financial decision-making
Ricoh	Manufacturing	Shadow Price	4,200yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote low-carbon investment and introduce electricity derived from renewable energy Used as a criterion for making capital investments and purchasing renewable energy certificates
AGC		Shadow Price	6,500- 10,000yen	Targets Set	 Targets Scope1, 2 The ICP is used to encourage investment in capital investment to reduce greenhouse gas emissions and investment in technology development to reduce greenhouse gas emissions
DIC		Shadow Price	8,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations Contributing to promoting the introduction of renewable energy equipment such as solar power generation
Aica Kogyo	- Material	Shadow Price	8,750- 16,250yen	Unable to confirm	 Targets Scope1, 2 Introduced an ICP system for in-house capital investment to promote the introduction of equipment that contributes to CO2 reduction. Prices are set using IEA's carbon price forecast for the 1.5°C target scenario for developed countries
Asahi Kasei		Shadow Price	15,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Ube Corporation	Material	Shadow Price	10,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Investment evaluation taking carbon pricing into account for capital investment projects with an annual increase or decrease of 1,000 tCO2 or more
Kao		Shadow Price	21,000yen	Targets Set	 Target Scope1 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, meet stakeholder expectations, and reduce supply chain emissions Used for investment decisions such as energy saving equipment, low CO2 equipment, renewable energy procurement, etc. Set CO2 reduction targets for Scope 1 and 2 and raised ICP to 168 USD
Kuraray		Shadow Price	10,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and meet stakeholder expectations ICP is applied to the expected increase/decrease in GHG emissions for each capital investment project and converted into cost, which is used as one of the investment decision criteria
Resonac Holdings		Shadow Price	10,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior and promote low-carbon investments We have set a goal to reduce Scope 1 and 2 emissions by 30% in 2030 (compared to 2013) and use this goal to make investment decisions such as the introduction of energy-saving equipment at each business' factory

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail	
Sumitomo Osaka Cement		Shadow Price	5,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote low-carbon investments Use as a reference for investment decisions in capital investment plans that involve increases and decreases in CO2 emissions 	
Sumitomo Chemical			Shadow Price	10,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Promoting GHG emission reduction investment and energy saving investment towards achieving SBT, ICP has been established to be considered as an economic asset when making all new capital investments, promoting energy saving investment and fuel conversion
Sumitomo Metal Mining	Material	laterial Shadow Price	20,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior and promote energy efficiency. Considers ICP pricing when making capital investments related to energy saving and CO2 emission reduction 	
Taiheiyo Cement			Shadow Price	5,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments ICP is used to quantitatively understand the economic effects of CO2 reduction and promote effective capital investment in efforts to achieve carbon neutrality
Nippon Sanso Holdings		Shadow Price	4,500yen	Unable to confirm	 Targets Scope1, 2 The introduction of ICP has also led to improved environmental awareness in each business division and group company, and we are promoting updates to highly efficient equipment 	

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Teijin		Shadow Price	14,000yen	Targets Set	 Targets Scope1, 2, 3 (upstream) Introducing ICP to change internal behavior and promote low-carbon. We have set a goal of achieving Net-Zero across all our business sites by FY2050 and a 30% reduction compared to FY2018 by FY2030 ICP is utilized to support capital investment plans that incorporate the risk of future carbon price increases and contribute to reducing CO2 emissions from your company
Denka			Internal Fee	2,000yen	Unable to confirm
Tokyo Steel Manufacturing	Material	Shadow price	9,293yen (63USD*1)	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities Applied in 4 of the factories in Japan. Expected reduction in greenhouse gas emissions associated with the capital investment is multiplied by ICP to convert it into a monetary amount and calculate the effect. It is used as an indicator for making decisions regarding capital investment
Tosoh		Shadow Price	6,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior and promote low-carbon investments When evaluating the economic efficiency (payback period) of energy-saving equipment investment, the amount calculated by multiplying ICP by the amount of reduction will be considered as investment recovery funds

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024) *1 : 1 dollar = 147.50yen (using exchange rate as of the end of January 2024)

Company	Sector	ICP Type	Set price (tCO2)	SBT Certified	Detail
Toray Industries		Shadow Price	4,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to promote energy efficiency and promote low-carbon investments ICP is applied to promote energy saving and low carbon activities in all Toray Group business areas
Tokuyama		Internal Fee	10,000yen	Committed (within 2 years)	 Target Scope1 Introducing ICP to promote low-carbon investments ICP is used to promote energy conservation and determine investment in non-fossil fuels for private power generation equipment. To increase effectiveness of ICP, current level was increased from 3,700 yen/ton-CO2 to 10,000 yen/ton-CO2 in FY22
Nitto Denko		Shadow Price	10,000yen	Unable to confirm	 Target Scope1 Introducing ICP to promote low-carbon investments An incentive of 10,000 yen/tCO2 will be given when calculating the return on investment
Nissan Chemical	Material	Shadow Price	6,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, guide GHG regulations, and meet stakeholder expectations ICP is used to calculate operating income for each business division, taking into consideration criteria for capital investment and GHG emission costs
Nippon Sheet Glass		Shadow Price	14,400yen	Targets Set	 Targets Scope1,2,3 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, and meet stakeholder expectations ICP will be reviewed twice in 2022 and validated based on the latest carbon price forecasts by external analysts
Mitsui Chemicals		Implicit Price	15,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities ICP is used for performance evaluation and investment decision criteria the end of January 2024)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Mtsubishi Gas Chemical	Material	Shadow Price	10,000yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and guide GHG regulations Considers annual carbon price and utilizes for equipment investment decisions
Mitsubishi Paper Mills		Implicit Price	記載なし	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities Uses ICP as reference information when comparing investment decisions to promote low carbon
Lion		Implicit Price	6,100yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Considers ICP when investing in equipment, technology development, and introducing renewable energy
Kansai Electric Power	Power generation	Shadow Price	1,381yen	Unable to confirm	 Targets Scope1, 3 (upstream) Introducing ICP to guide GHG regulations, meet stakeholder expectations, change internal behavior, promote energy efficiency, promote low-carbon investments, stress test investments, and identify and utilize low-carbon opportunities ICP is mainly used to evaluate power generation equipment investment
Kyushu Electric Power		Shadow Price	1,400- 2,900yen	Targets Set	 Targets Scope1, 3 (upstream) Established ICP as part of internal investment standards to further promote renewable energy business that contributes to improving the group's corporate value

Company	Sector	ICP Type	Set price (tCO2)	SBT Certified	Detail
Chugoku Electric Power		Shadow Price	435yen	Unable to confirm	 Target Scope1 Introducing ICP to promote energy efficiency. ICP is applied when bidding for thermal power generation. Regarding bidding, price evaluations will be conducted based on the "Guidelines for Bidding for New Thermal Power Generation", considering the cost of CO2 countermeasures
Chubu Electric Power		Shadow Price	5,000- 16,000yen	Unable to confirm	 Targets Scope1, 3 (upstream) Introducing ICP to conduct stress-test investments Amount set based on WEO STEPS scenario and APS scenario
Electric Power Development (J-POWER)	Power generation	Shadow Price	4,800- 10,800yen	Unable to confirm	 Target Scope1 Introducing ICP to change internal behavior and promote low-carbon investments ICP is used for investment in new power generation projects, re-evaluating economic efficiency, and considering target costs when developing low-carbon technologies
Tokyo Electric Power		Shadow Price	300- 25,000yen	Unable to confirm	 Targets Scope1,2,3 Introducing ICP to promote low-carbon investments and identify and utilize low-carbon opportunities Utilize ICP in business decisions such as investment and procurement
Tohoku Electric Power			Shadow Price	1,333- 2,888yen	Unable to confirm

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail	
Sojitz		Shadow Price	1,836- 34,000yen	Unable to confirm	 Targets Scope1, 3 Introducing ICP to conduct stress-test investments and meet stakeholder expectations Scenario analysis based on the IPCC's 1.5°C scenario incorporates costs that assume a rise in carbon prices and examines future business plans and strategies 	
Toyota Tsusho		Internal Fee	30,000yen	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities 	
Marui Group	Retail	Retail	Implicit Price	29,525yen	Targets Set	 Target Scope2 Introducing ICP to change internal behavior, promote low-carbon investments, and identify and utilize low-carbon opportunities When selecting electric power company to supply electricity in stores and facilities with high GHG emission composition, ICP is used to consider not only costs but also GHG reductions, including renewable energy procurement
Mitsubishi Corporation		Shadow Price	62.2-435yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, meet stakeholder expectations, and conduct stress-test investments 	
MS&AD Insurance Group Holdings	Service	Implicit Price	10,000yen	Removed ^{*1}	 Target Scope2 ICP is used as a basis for decision-making when confirming and comparing additional costs associated with renewable energy contracts, investments in energy-saving equipment such as high- efficiency appliances and LED lighting, and purchasing hybrid, electric, and hydrogen vehicles 	
NTT DATA		Shadow Price	6,500yen	Targets Set	 Target Scope2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, and meet stakeholder expectations ICP will be introduced in stages, first considering operation when updating data center air conditioning equipment 	

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024) *1 : If a goal is not submitted within 24 months of commitment, the goal will be classified as "deleted" on the dashboard.

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Sompo Holdings		Internal Fee	1,100yen	Committed (within 2 years)	 Targets Scope1, 2 Utilizing ICP for investment decisions in LED and CO2 reduction equipment Prices are set based on external prices from the Tokyo Cap-and-Trade Scheme
Askul		Implicit Price	8,500yen	Targets Set	 Targets Scope1, 2, 3 (upstream) When making environmental investments such as energy-saving equipment in logistics centers such as lighting and air conditioning, the price calculated by multiplying the expected CO2 reduction by the installation of equipment by ICP is presented as a reference value, promoting environmental investment in equipment
ORIX Corporation	Service	Shadow Price	15,000yen	Unable to confirm	 Targets Scope1, 2 Estimating the impact of ICP on each risk and opportunity in the 1.5°C scenario
ORIX JREIT		Internal Fee	13,650yen	Unable to confirm	 Targets Scope1, 2, 3 (downstream) Used to calculate future carbon tax burden in scenario analysis
Secom		Shadow Price	10,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency, promote low-carbon investments, and identify and utilize low-carbon opportunities The difference between the expected future carbon tax amount based on the group's overall GHG emissions and the cost required for future carbon-zero measures is used as one of the criteria for implementation decisions

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Softbank		Shadow Price	12,000- 20,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to visualize potential costs of carbon tax and promote decarbonization plans
Dai-ichi Life Holdings		Other	3,000yen	Unable to confirm	 Targets Scope1, 2 Analyze the impact of carbon taxes on investee companies and reflect the results in internal investment and loan rankings to make investment decisions
Dai Nippon Printing		Shadow Price	3,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP with the aim of encouraging investment in equipment with high energy-saving performance and CO2 reduction effects
Daiwa Securities Group	Service	Shadow Price	3,278yen	Unable to confirm	 Target Scope2 Use ICP to determine the appropriateness of additional costs for introducing renewable energy
Daiwa House REIT Investment		Shadow Price	10,000yen	Targets Set	are calculated based on the converted amount by applying ICP to the GHG emissions of the target property and are used as a reference for
					 investment decisions By selecting suppliers with low emissions, they aim to reduce the risk of increased procurement costs when a carbon tax is introduced in the future

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Tokyu Land Corporation		Shadow Price	5,000yen	Targets Set	 Targets Scope1, 2, 3 (downstream) Introducing ICP to change internal behavior, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, meet stakeholder expectations, and reduce supply chain emissions ICP is used to improve internal environmental awareness, implementing specific reduction measures, and identify high-carbon businesses during business selection
Tokio Marine Holdings		Shadow Price	1,500- 3,000yen	Removed*1	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, guide GHG regulations, and meet stakeholder expectations Utilizing ICP in the management decision-making process to comply with the Tokyo Cap-and-Trade Program and promote energy conservation and emissions reduction activities
TOPPAN Holdings	Service	Shadow Price	17,358yen	Targets Set	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, and promote low-carbon investments Applicable to investment in energy-saving equipment and renewable energy equipment to reduce energy consumption
NEC		Shadow Price	3,000yen	Targets Set	 Targets Scope1, 2 Introducing ICP to promote energy efficiency and promote low-carbon investments Integrating ICP into spend evaluations for facility upgrades including energy efficient solutions
Nomura Research Institute		Internal Fee	4,000yen	Targets Set	 Target Scope2 Introducing ICP to change internal behavior and identify and utilize low- carbon opportunities

Source: CDP responses from each company (2023), Science Based Targets website (as of the end of January 2024) *1 : If a goal is not submitted within 24 months of commitment, the goal will be classified as "deleted" on the dashboard.

Company	Sector	ICP Type	Set price (tCO2)	SBT Certified	Detail
Nomura Holdings		Shadow Price	6,000- 8,000yen	Unable to confirm	 Target Scope2 Introducing ICP to change internal behavior and promote energy efficiency Utilizing ICP for decision-making in switching electricity consumption to renewable energy
Fujitsu		Internal Fee	4,000yen	Targets Set	 Targets Scope1, 2 ICP is used to promote decision-making processes for lower carbonization in capital investment and operations
Mitsubishi UFJ Financial Group	Service	Shadow Price	4,400yen	Unable to confirm	 Targets Scope3 (downstream) ICP is used when making sustainable investments at banks
LINE Yahoo		Shadow Price	289- 10,125yen	Unable to confirm	 Targets Scope1, 2 ICP is used to estimate the financial impact of dealing with transition risks such as introducing a carbon tax based on CO2 emissions and stricter regulations and penalties
Resona Holdings		Implicit Price	10,000- 16,000yen	Unable to confirm	 Target Scope2 Utilizing ICP to compare the cost increase associated with the introduction of renewable energy into the electricity used

Transportation Service Sector (1/2)

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
ANA Holdings		Shadow Price	5,200- 13,000yen	Targets Set	 Target Scope1 Investing in SAF is one of the main measures to achieve emission reductions, and the price of CO2 credits is referenced in making investment decisions Prices are set in the range of 40-100 euros based on EU-ETS prices
Kawasaki Kisen Kaisha		Shadow Price	7,000yen	Targets Set	 Target Scope1 Refer to the ICP when evaluating investment proposals for energy saving and environmental conservation of ships and make investment decisions considering expected reduction in CO2 emissions and the profitability of the project
Mitsui O.S.K. Lines	Transportation Service	Implicit Price	7,150- 19,250yen	Unable to confirm	 Targets Scope1, 2 Introducing ICP to change internal behavior, promote energy efficiency, promote low-carbon investments, identify and utilize low-carbon opportunities, guide GHG regulations, and meet stakeholder expectations The IEA published carbon price assumption is used as the ICP price. In accordance with the IEA time axis, approximately \$65/ton-CO2 is adopted from 2025 to 2039, and approximately \$175/ton-CO2 from 2040 onwards
West Japan Railway		Internal Fee	5,000yen	Unable to confirm	 Targets Scope1, 2 Consider ICP in economic calculations when making decisions on capital investments that have CO2 emission reduction as the main purpose or main side effect, such as energy-saving capital investment
Nippon Yusen		Shadow Price	9,600- 11,200yen	Targets Set	 Target Scope1 Anticipating future introduction of fuel charges and emissions trading for international shipping, the impact of GHG emissions will be used as an investment indicator to promote investment toward decarbonization

Company	Sector	ІСР Туре	Set price (tCO2)	SBT Certified	Detail
Japan Airlines	Transportation Service	Shadow Price	15,000yen	Committed (within 2 years)	 Targets Scope1, 2 Introducing ICP to promote low-carbon investments and identify and utilize low-carbon opportunities In response to ICAO CORSIA, CO2 price estimates are applied to investment decisions on SAF (alternative aviation fuel) and utilized for investment decisions
East Japan Railway		Shadow Price	200- 1,100yen	Committed (within 2 years)	 Targets Scope1, 2 Determining investment plan considering cost-effectiveness of CO2 reduction based on the credit price of Tokyo's cap-and-trade system (ETS)

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat	ional)
and reference parameters and tools	
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduction targets and investment	tion 2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re information	ference 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Outline of the Model Project for Supporting Nature-Related Financial Disclosure Utilizing Climate-Related Financial Disclosure in FY2024 (commonly referred to as the Nature Disclosure Practice Project) and explanation of this chapter

This chapter includes a summary of the Nature Disclosure Practice Project and materials on the results reported by the recipient companies at the results debriefing session.

Outline

• The following pages provide an overview of the FY2024 Nature-related Financial Information Disclosure Support Model Project (commonly referred to as the Nature Disclosure Practice Project) conducted by the Ministry of the Environment of Japan, and the results of the companies supported by the project.

Purpose and Background of the Project

- Since the publication of the TNFD Disclosure Proposal in September 2023, the number of companies supporting the proposal has been steadily increasing, and the number of companies that actually disclose information has been increasing. On the other hand, many companies still face challenges in disclosing information on nature, as it is necessary to incorporate unique perspectives such as "dependence," "impact," and "impact assessment based on regional characteristics" into the analysis.
- In light of this situation, this project aims to improve the quality and expand the quantity of TNFD disclosure in Japan by providing support for "scenario analysis" and "goal setting" in corporate disclosure of information on nature, and by widely disclosing the results.

Objectives of the Project

 This project aims to improve the quality and expand the quantity of disclosures made by the Task Force on Nature-related Financial Disclosures (TNFD) and other organizations in Japan by providing support for "scenario analysis" and "goal setting" in corporate disclosure of nature-related information, and by making the results widely available to the public.

Details of Implementation

Among the information disclosures in line with the TNFD disclosure recommendations, we provided support for (1) scenario analysis and (2) target setting, especially for nature-related issues faced by Japanese companies. (*For details, see 3-4. TNFD Scenario Analysis and 3-5.)

Support period

June 2024 - January 2025

Companies to be supported

- (1) Scenario analysis: Takenaka Corporation, KDDI Corporation
- (2) Goal setting: TOPPAN Holdings Inc.

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

_	page
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and internat and reference parameters and tools	ional)
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1
1-2-1. List of parameters	1-87
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	ternal
2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4) : Consideration of the scope of ICP application an	
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and re information	ference 2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 ion 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix

	page	
Chapter 1 TCFD scenario analysis Disclosure cases (domestic and international) and reference parameters and tools		
1-1. TCFD scenario analysis Disclosure cases (domestic and international 1-2. TCFD scenario analysis reference parameters/tools	1-1	
1-2-1. List of parameters	1-87	
1-2-2. Physical risk tools	1-189	
1-2-3. List of TCFD related literature	1-216	
Chapter 2 Definition, theory, practice, and reference information of ICP (in carbon pricing)	iternal	
2-1. Definition of internal carbon pricing	2-1	
2-2. Theoretical version of internal carbon pricing	2-20	
2-2-1. Consideration of price setting	2-23	
2-2-2. Consideration of utilizing method	2-35	
2-2-3. Consideration of internal structure and future initiatives	2-47	
2-3. Practical version of internal carbon pricing	2-53	
2-3-1. Introduction : Consideration of the purpose of introducing ICP	2-55	
2-3-2. Consideration (1) : Consideration of ICP price	2-59	
2-3-3. Consideration (2) : Consideration of the decision-making process	2-66	
2-3-4. Consideration (3) : Consideration of internal structure	2-70	
2-3-5. Consideration (4) : Consideration of the scope of ICP application ar	nd	
applicable companies	2-79	
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduced	ction	
targets and investment	2-87	
2-3-7. Consideration (6) : Consideration of budget management and limit		
on ICP	2-90	
2-4. Reference information on internal carbon pricing		
2-4-1. Frequently asked questions and example answers, glossary, and re information	eference 2-97	
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111	
2-4-3. List of companies that have introduced ICP in Japan	2-136	
Chapter 3 Nature-related financial disclosure model (TNFD scenario analys target setting)	sis and	

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40

Main Part

	page
 Chapter 1 Introduction 1-1. Purpose of this practical guide 1-2. Impact of climate change on the environment and nature 1-2-1. Climate change and corporate management 1-2-2. Overview of the TCFD recommendations 1-2-3. Overview of nature-related risks and TNFD recommendations 	1-1 1-5 1-16 1-52
 Chapter 2 TCFD scenario analysis practical points 2-1. Steps to conduct scenario analysis 2-1-1. STEP1. Establishment of governance 2-1-2. STEP2. Assessment of Risk severity 2-1-3. STEP3. Definition of scenarios 2-1-4. STEP4. Business impact evaluation 2-1-5. STEP5. Definition of countermeasures 2-1-6. STEP6. Documentation and disclosure 2-2. Incorporating scenario analysis into strategy and execut 	2-1 2-8 2-17 2-32 2-48 2-69 2-83 on 2-91
Chapter 3 Preparing for nature-related financial disclosure 3-1. Relationship between TCFD and TNFD 3-2. TNFD disclosure example 3-3. Analysis tools 3-4. Advanced nature-related financial disclosure 3-4-1. TNFD Scenario Analysis 3-4-2. Goal setting	3-1 3-9 3-21 3-38 3-41 3-70

Appendix	

page

Chapter 1 TCFD scenario analysis Disclose	ure cases	ៃ (dom	estic an	d int	ernat	tional)
and reference parameters and tools						

1-1. TCFD scenario analysis Disclosure cases (domestic and international	1-1
1-2. TCFD scenario analysis reference parameters/tools	
1-2-1. List of parameters	1-87

1-2-1. List of parameters	1-07
1-2-2. Physical risk tools	1-189
1-2-3. List of TCFD related literature	1-216

Chapter 2 Definition, theory, practice, and reference information of ICP (internal carbon pricing)

2-1. Definition of internal carbon pricing	2-1
2-2. Theoretical version of internal carbon pricing	2-20
2-2-1. Consideration of price setting	2-23
2-2-2. Consideration of utilizing method	2-35
2-2-3. Consideration of internal structure and future initiatives	2-47
2-3. Practical version of internal carbon pricing	2-53
2-3-1. Introduction: Consideration of the purpose of introducing ICP	2-55
2-3-2. Consideration (1) : Consideration of ICP price	2-59
2-3-3. Consideration (2): Consideration of the decision-making process	2-66
2-3-4. Consideration (3) : Consideration of internal structure	2-70
2-3-5. Consideration (4): Consideration of the scope of ICP application and	d
applicable companies	2-79
2-3-6. Consideration (5) : Consideration of the linkage between CO2 reduc	tion
targets and investment	2-87
2-3-7. Consideration (6) : Consideration of budget management and limit	
on ICP	2-90
2-4. Reference information on internal carbon pricing	
2-4-1. Frequently asked questions and example answers, glossary, and ref	ference
information	2-97
2-4-2. Examples of advanced ICP implementation in Japan and overseas	2-111
2-4-3. List of companies that have introduced ICP in Japan	2-136
napter 3 Nature-related financial disclosure model (TNFD scenario analys)	is and

Chapter 3 Nature-related financial disclosure model (TNFD scenario analysis and target setting)

3-1. Outline of Model Project	3-1
3-2. TNFD Scenario Analysis: Takenaka Corporation	3-4
3-3. TNFD Scenario Analysis: KDDI Corporation	3-23
3-4. Target Setting: TOPPAN Holdings Inc.	3-40