

レストランチェーンの 生物多様性に配慮した 持続的な米の仕入れの挑戦

株式会社アレフ エコチーム ふゆみずたんぼプロジェクト 荒木洋美

会社概要

創 業:1968年 盛岡市内「ハンバーガーとサラダの店 べる」

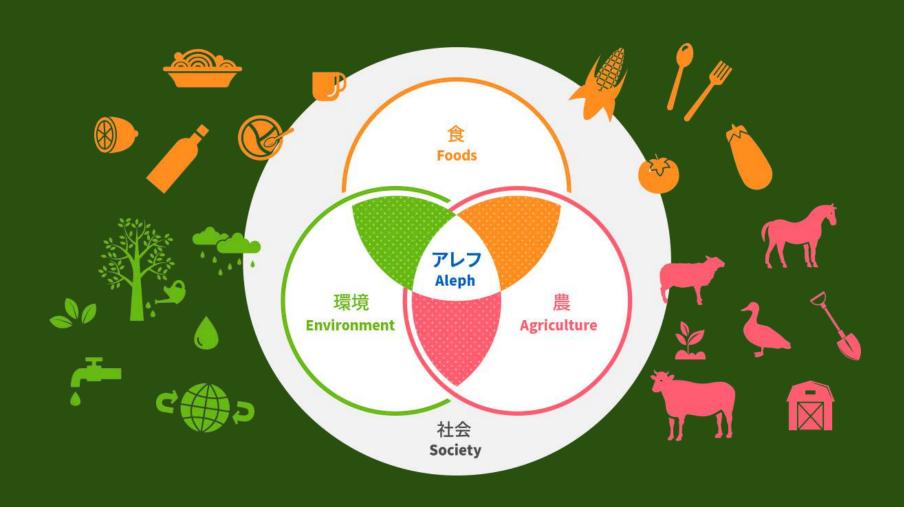
本 社:北海道札幌市白石区菊水

店舗数: 341店舗 (直営131店、フランチャイズ210店)

※2022年12月20日 時点

正社員 約762人、パート 約2560人

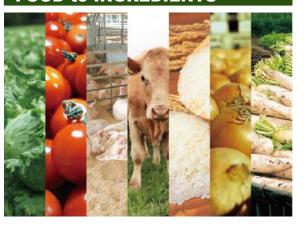
年 商: 343億円 (2022年3月期)


事 業:

ハンバーグレストラン「びつくりドンキー」

全国 8か所に食品加工工場・

農業・環境・文化をテーマとした観光施設 「えこりん村」


地ビール「小樽ビール」の製造、販売

食は人を良くする

食から食材へ FOOD to INGREDIENTS

安全な「食」、 健康をつくる「食材」の追求

1979年 衛生検査室を開設

食材から農業へ INGREDIENTS to AGRICULTURE

「食材」が作られる現場を 学び、研究する

1988年 実験農場開設、1990年 アレフ牧場開設支援、1996年 農薬を控えた米調達

農業から自然へ AGRICULTURE to NATURE

資源利用を減らす、 環境負荷を下げる、 自然資源を保全する

1996年 生ごみ処理機、 2001年 全社省エネ活動、 2003年 生物多様性シンポジウム

①米の仕入れと提供

お米の使用量

米の使用量:1店舗当 年間約200~300俵使用

年間 8万俵以上=1,000ha以上の水田

高品質で安全なお米を 毎年5000トン以上 持続的に調達するには?

全量契約栽培:自社基準「省農薬米」

- あぜを含め、殺虫剤および殺菌剤の使用を禁止し、 「除草剤1回だけ」に制限
- 化学肥料の使用は地域ごとの肥料(窒素成分量)の慣行レベルの50%未満にし、有機物の施用を推奨
- 食味Aランクを目標とし、毎年産地ごとの食味検査を行う
- 米の品種は地域ごとに適した品種を栽培(適地適作)
- 指定の精米工場で精米し、店舗では精米後14日以内に使用

Ⅰ996年 米の契約栽培の取組開始2006年フランチャイズを含む全店舗のお米を独自基準「省農薬米」に切替

「どの産地の、どの田んぼで、どのように栽培されたか」がわかるお米

産地だけではなく お米の保管状況や精米 所にも毎年監査を行う

お米の生産者協議会(2010年~)

社内歴代担当者

②生物多様性に配慮した米づくり

田んぼの生きもの調査

生産者の田んぼの生き物調査

2009年 一部開始

2016年 直営産地の全生産者

2018年 フランチャイズ産地に指導開始

2023年 びっくりドンキーのすべての生産者が年し回実施

田んぼの生きもの調査

びっくりドンキー米生産者による 田んぼの生き物調査の実施率

2020年 目標 70%

実績 68%

2021年 目標 80%

実績 77%

2022年 目標 90%

2023年 目標 100%

なぜ、水田の生物多様性へ配慮するのか

田んぼはもともと・・・

- ① お米づくりの場所であるが、同時に生きものにとっても住みやすい場所(湿地)
- ② 人間が手を入れて、維持してきた
- ③ 周囲の環境、水路、畦、ため池、林など、とのつながり(里山)

現在は・・・

作業性の効率化(乾田化、用排水分離、コンクリート排水、農薬使用、 餌(有機分のない施肥)の減少)で生きものが住みにくくなってきている

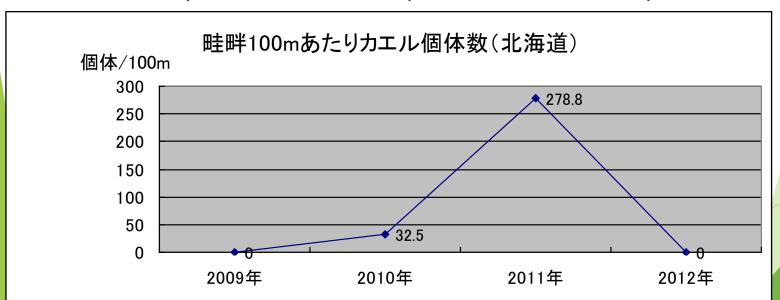
日本の田んぼには、5,668種類の生きもの(桐谷他(2010))

特にアジアでは、水田生態系は生物多様性にとって重要な場所のひとつ(お米以外の食料の供給場所としても)

中干の影響

稲 1 株あたりオタマジャクシ 1 1 匹 (農と自然の研究所) → (坪 5 0 株植えとして) 1 0 aあたり 1 6.7 万匹の オタマジャクシを育てている

畔の管理方法とカエルの数


除草剤を使用している畔(北海道 当別町)

畔の管理方法とカエルの数

生物多様性配慮項目

【2016~2019年目標】

下記合計7項目の合計

- *水田内のビオトープ、溝、湛水休耕田/ビオトープ水田、冬期湛水
- *水路の魚道、コンクリート排水路に脱出装置、堰上げ水路
- 2016年結果 水田内977か所、水路等632か所
- 2018年結果 水田内1036か所、水路等384か所
- 2019年結果 水田内1075か所、水路等398か所

【2020年からの目標】

生産者から報告されたすべての生物に配慮した活動の総数

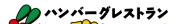
2020年結果 2718か所

2021年結果 2868か所

生産者が行う 生きものがよろこぶこと

生きもの調査

シンボル生きもの生物を操性の向上策



「田んぼの生きものの危機」への対処はいろいろ

1	
田んぼの生きものの危機	生物多様性配慮項目
カエル等の生息地の減少	畦に除草剤をかけない
アカガエル、ヒキガエルの産卵 場所の減少	冬期湛水
	雪どけ水湛水
早すぎる中干しによるヤゴ、オ	中干ししない、中干し延期
タマジャクシの減少	ビオトープや溝などの中干し時の避難場所
排水路と田んぼの落差	魚道の設置、堰上げ水路
用排水のコンクリート水路化	亀かえるスロープの設置
地域の開発	地域でのため池や用水、里山の保全活動
外来種	外来種駆除(ため池のブラックバスなど)
地域の水質悪化	無代かき、代かき水を流さない(大潟村など)
生物多様性に対する無理解	地域での生きもの調査

…その地域の課題によって取り組み内容が決まる

生物多様性配慮項目

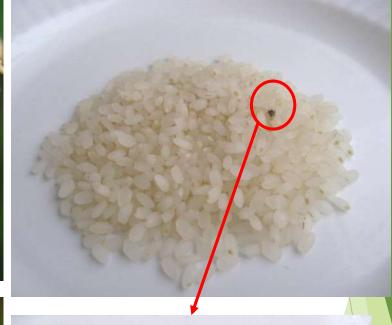
■ ビオトープなど(湛水期間の長い場所の設置)

■ 魚道、堰上げ水路

■ 冬期湛水(ふゆみずたんぼ)、早期(雪どけ水)湛水

■ コンクリート水路対策(亀かえるスロープなど)

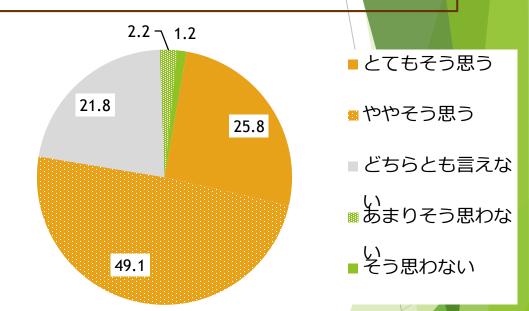
estatアレフ



③生物多様性に配慮するメリット

稲の害虫

稲の益虫



消費者の反応 (アンケート結果より)

Q. 生き物の生息環境に配慮した、生き物にとってやさしい方法で育てられ 農産物は、あなたご自身の健康にとっても安全・安心な農産物だと思い

生きものが豊かである =安全な食べ物

25.8%以上の消費者が"とてもそう思う" "ややそう思う"も含めると約75%が認識

えこりん村

ふゆみずたんぼ

2005年造成。

水は天水と地下水使用。

面積:1000㎡

雪解け直後からの湛水と、農薬と化学肥料を使用しない栽培を行っている。

使用しない栽培を行っている。 手作業のお米作り体験ができる。

トンボや水生の甲虫類、カメムシ類、モノアラガイ等の水生生物が豊富。

2006年 恵庭市にエコロジーテーマガーデン「えこりん村」開園

ふゆみずタンゴ

水田の生きものの楽しさを伝える歌と踊りのアニメーション 生物多様性アクション大賞2013 Green TV賞を受賞

びっくりドンキー 田んぼの生きもの調査

■ 2011年開始

■ 2018年度の例

5会場開催

協力:北海道ふゆみずたんぼ P

J

JA岩手ふるさと

蕪栗米千葉農場

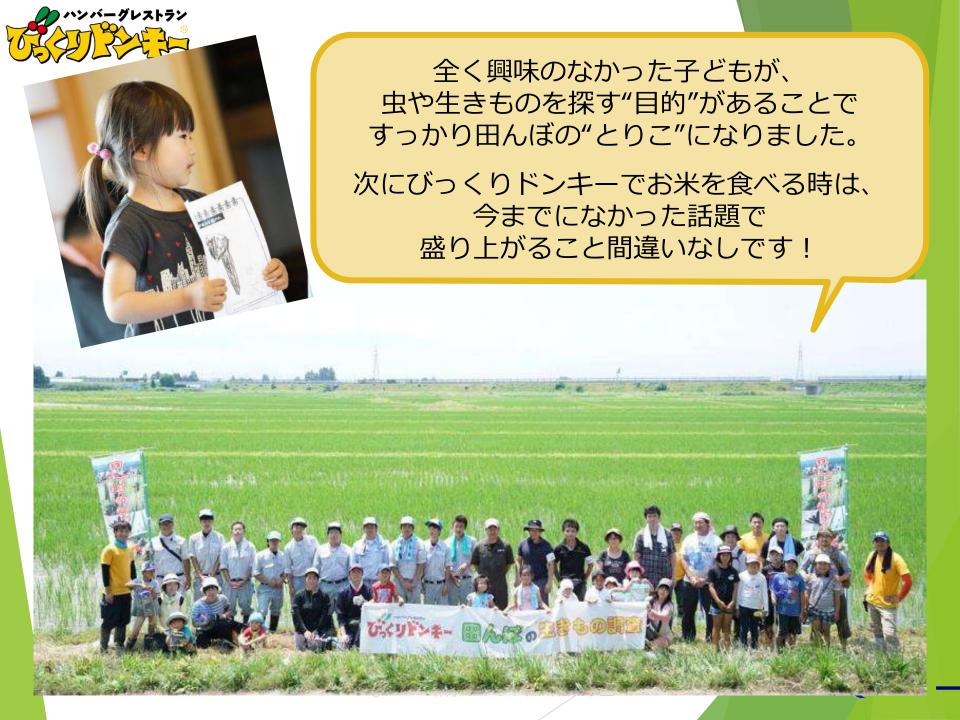
山形おきたま産直セン

ター

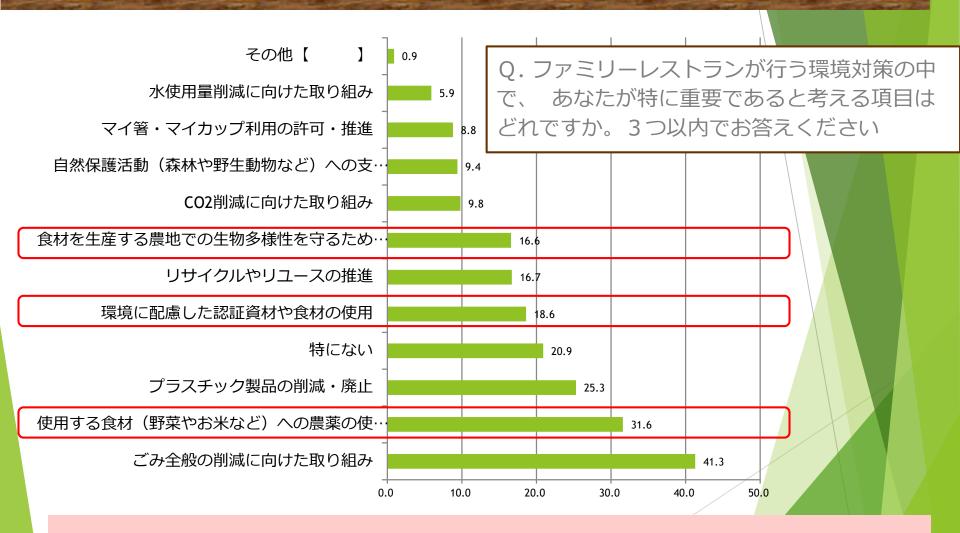
応募総数: 514名

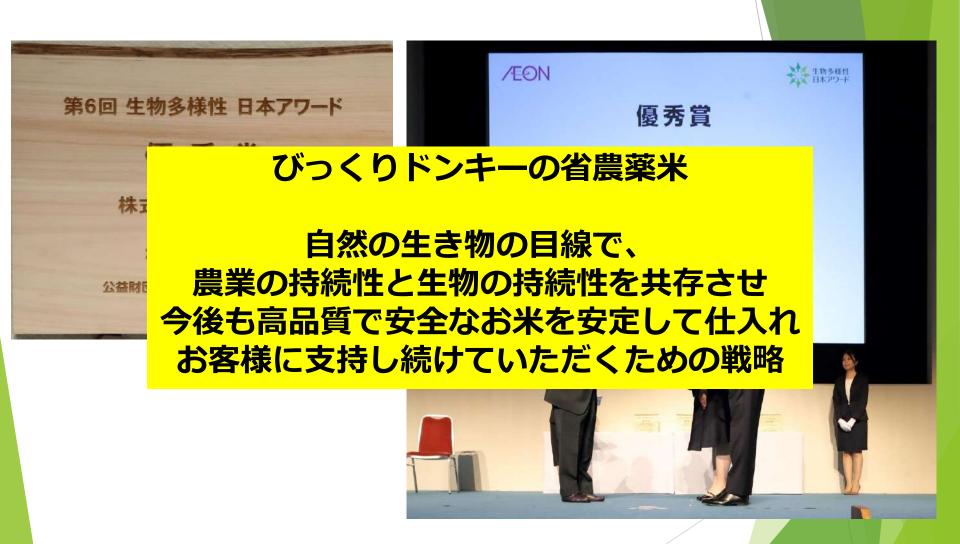
参加者総数: 225名

店舗従業員参加総数: 12名


■ 2019年まで

開催回数:30回


のべ参加者数: 1142名



消費者の反応(アンケート結果より)

レストランの環境対策の中で食材に対する関心が高い

第6回生物多様性日本アワード 優秀賞を受賞

K WITH

環境に配慮した持続可能な農業へ

みどりの食料システム戦略(概要

令和3年5月

ゼロエミッション

持続的発展

革新的技術・生産体系の

2020年 2030年 2040年 2050 5

速やかな社会実装

至新的技術, 生産体

開発されつつある

現状と今後の課題

- 生産者の減少・高齢化、 地域コミュニティの衰退
- ○温暖化、大規模自然災害 ○ コロナを契機としたサプライ
- チェーン混乱、内食拡大
- SDGs や環境への対応強化
- ○国際ルールメーキングへの参画

Farm to Fork 戦略」(20.5) 2030 年までに化学農薬の使 用及びリスクを50%減、有 機農業を25%に拡大

「農業イノベーションアジェンダ」 (20.2)

2050 年までに農業生産量 40%増加と環境フットプリン ト半減

農林水産業や地域の将来も 見据えた持続可能な 食料システムの構築が急務

持続可能な食料システムの構築に向け、「みどりの食料システム戦略」を策定し、 中長期的な観点から、調達、生産、加工・流通、消費の各段階の取組と カーボンニュートラル等の環境負荷軽減のイノベーションを推進

目指す姿と取組方向

2050 年までに目指す姿

- 農林水産業の CO2 ゼロエミッション化の実現
- 低リスク農薬への転換、総合的な病害虫管理体系の確立・普及 に加え、ネオニコチノイド系を含む従来の殺虫剤に代わる新規農薬 等の開発により化学農薬の使用量(リスク換算)を50%低減
- 輸入原料や化石燃料を原料とした化学肥料の使用量を30%低減
- 耕地面積に占める有機農業の取組面積の割合を 25%(100 万 ha) に拡大
- 2030年までに食品製造業の労働生産性を最低3割向上
- 2030年までに食品企業における持続可能性に配慮した 輸入原材料調達の実現を目指す
- エリートツリー等を林業用 苗木の 9割以上に拡大
- ニホンウナギ、クロマグロ等の養殖において人工種苗比率 100% を実現

戦略的な取組方向

2040年までに革新的な技術・生産体系を順次開発(技術開発目標) 2050年までに革新的な技術・生産体系の開発を踏まえ、

今後、「政策手法のグリーン化」を推進し、その社会実装を実現(社会実装目標) ※政策手法のグリーン化: 2030 年までに施策の支援対象を持続可能な会料・農林水産業を行う者に集中。

2040年までに技術開発の状況を踏まえつつ、補助事業についてカーボンニュートラルに対応することを目指す。 補助金装売、環境負荷軽減メニューの充実とセットでクロスコンプライアンス要件を充実。

※革新的技術・生産体系の社会実装や、持続可能な取削を後押しする観点から、その時点において必要な説制を目直し。 地産地消型エネルギーシステムの構築に向けて必要な規制を示点し、

期待される効果

持続的な産業基盤の構築

- 輸入から国内生産への転換(肥料・飼料・原料調達)
- 国産品の評価向上による輸出拡大 新技術を活かした多様な働き方、生産者のすそ野の拡大

- 消費者が連携した健康的な日本型食生活
- 地域資源を活かした地域経済循環 多様な人々が共生する地域社会

将来にわたり安心して 暮らせる地球環境の継承

- 環境と調和した食料・農林水産業
- 化石燃料からの切替によるカーボンニュートラルへの貢献
- 化学農薬・化学肥料の抑制によるコスト低減

アジアモンスーン地域の持続的な食料システムのモデルとして打ち出し、国際ルールメーキングに参画(国連食料システムサミット(2021年9月)など)

2021年5月に農水省が交付し、2022年6月に2030年までのKPIを発表

農林水産省が発表

2050年までに 日本の農業を

- ①ネオニコチノイド不使用
- ②農薬の使用量50%低減
- ③化学肥料の使用を 30%低減
- 4年機農業の面積を I00万ha (全体の25%)

この一皿に、 たいせつなこと、 ひとつずつ。

ご静聴ありがとうございました