除草剤グリホサート誘発性雄性不稔、

チョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート 及びグリホサート耐性トウモロコシ (cry1A.105, 改変 cry2Ab2, cry1F, pat, 改変 cp4 epsps, 改変 cry3Bb1, cry34Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis) (MON87427 × MON89034 × B.t. Cry1F maize line 1507 × MON88017 × B.t. Cry34/35Ab1 Event DAS-59122-7, OECD UI: MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-88Ø17-3 × DAS-59122-7)

(MON87427, MON89034, *B.t.* Cry1F maize line 1507, MON88017 及び *B.t.* Cry34/35Ab1 Event DAS-59122-7 それぞれへの導入遺伝子の組合せを有するものであって当該トウモロコシから分離した後代系統のもの (既に第一種使用規程の承認を受けたものを除く。) を含む。)

申請書等の概要

第一	第一種使用規程承認申請書1					
生物	多桪	(性影	響評価書	3		
第一		生华	勿多様性影響の評価に当たり収集した情報	3		
1		宿	主又は宿主の属する分類学上の種に関する情報	3		
	(1)	分类	頁学上の位置付け及び自然環境における分布状況	3		
		1	和名、英名及び学名	3		
		2	宿主の品種名又は系統名	3		
		3	国内及び国外の自然環境における自生地域	3		
	(2)	使月	月等の歴史及び現状	3		
		1	国内及び国外における第一種使用等の歴史	3		
		2	主たる栽培地域、栽培方法、流通実態及び用途	4		
	(3)	生理	里的及び生態学的特性	5		
	1	* 基	本的特性	5		
		生	急又は生育可能な環境の条件	5		
	ノ	、捕1	急性又は寄生性	5		
	Ξ	- 繁殖	直又は増殖の様式	5		
		1	種子の脱粒性、散布様式、休眠性及び寿命	5		
		2	栄養繁殖の様式並びに自然条件において植物体を再生しうる			
			組織又は器官からの出芽特性	6		
		3	自殖性、他殖性の程度、自家不和合性の有無、近縁野生種との			
			交雑性及びアポミクシスを生ずる特性を有する場合はその程			
			度	6		

	4	花粉の生産量、稔性、形状、媒介方法、飛散距離及び	寿命6
才	、病原	原性	7
~	、有智	害物質の産生性	7
Ì	、その	の他の情報	7
2	遺信	伝子組換え生物等の調製等に関する情報	7
(1)	供与	与核酸に関する情報	8
1	′ 構月	成及び構成要素の由来	9
F	4 構足	成要素の機能	9
	1	目的遺伝子、発現調節領域、局在化シグナル、選抜マー	ーカーそ
		の他の供与核酸の構成要素それぞれの機能	9
	2	目的遺伝子及び選抜マーカーの発現により産生される	3蛋白質
		の機能及び当該蛋白質がアレルギー性を有することだ	が明らか
		となっている蛋白質と相同性を有する場合はその旨	18
	3	宿主の持つ代謝系を変化させる場合はその内容	21
(2)	べり	クターに関する情報	22
1	' 名和	称及び由来	22
E	2 特性	性	23
	1	ベクターの塩基数及び塩基配列	23
	2	特定の機能を有する塩基配列がある場合は、その機能	23
	3	ベクターの感染性の有無及び感染性を有する場合はそ	たの宿主
	域に	こ関する情報	24
(3)	遺伝	伝子組換え生物等の調製方法	24
1	宿	主内に移入された核酸全体の構成	24
E	宿:	主内に移入された核酸の移入方法	28
2	、遺信	伝子組換え生物等の育成の経過	28
	1	核酸が移入された細胞の選抜の方法	28
	2	核酸の移入方法がアグロバクテリウム法の場合はアク	ブロバク
		テリウムの菌体の残存の有無	28
	3	核酸が移入された細胞から、移入された核酸の複製物の	り存在状
		態を確認した系統、隔離ほ場試験に供した系統その他の	り生物多
		様性影響評価に必要な情報を収集するために用いられ	1た系統
		までの育成の経過	29
(4)	細別	抱内に移入した核酸の存在状態及び当該核酸による形質	[発現
	のす	安定性	32
	1	移入された核酸の複製物が存在する場所	32
	2	移入された核酸の複製物のコピー数及び移入された核	核酸の複
		製物の複数世代における伝達の安定性	32

		(3) 染色体上に複数コピーが存在している場合は、それらが隣接し	
		ているか離れているかの別	33
		④ (6)の①において具体的に示される特性について、自然条件の下	•
		での個体間及び世代間での発現の安定性	34
		⑤ ウイルスの感染その他の経路を経由して移入された核酸が野	
		生動植物等に伝達されるおそれのある場合は、当該伝達性の有	•
		無及び程度	34
	(5)	遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度	
		及び信頼性	34
	(6)	宿主又は宿主の属する分類学上の種との相違	35
		① 移入された核酸の複製物の発現により付与された生理学的又	
		は生態学的特性の具体的な内容	35
		② 以下に掲げる生理学的又は生態学的特性について、遺伝子組換	:
		え農作物と宿主の属する分類学上の種との間の相違の有無及	
		び相違がある場合はその程度	38
		a 形態及び生育の特性	38
		b 生育初期における低温又は高温耐性	38
		c 成体の越冬性又は越夏性	38
		d 花粉の稔性及びサイズ	38
		e 種子の生産量、脱粒性、休眠性及び発芽率	38
		f 交雑率	38
		g 有害物質の産生性	38
3		遺伝子組換え生物等の使用等に関する情報	39
	(1)	使用等の内容	39
	(2)	使用等の方法	39
	(3)	承認を受けようとする者による第一種使用等の開始後における	
		情報収集の方法	39
	(4)	生物多様性影響が生ずるおそれのある場合における生物多様性	
		影響を防止するための措置	39
	(5)	実験室等での使用等又は第一種使用等が予定されている環境と	
		類似の環境での使用等の結果	39
	(6)	国外における使用等に関する情報	39
第二	•	項目ごとの生物多様性影響の評価	41
1		競合における優位性	41
	(1)	影響を受ける可能性のある野生動植物等の特定	41
	(2)	影響の具体的内容の評価	41
	(3)	影響の生じやすさの評価	41

(4)	生物多様性影響が生ずるおそれの有無等の判断	41
2	有害物質の産生性	42
(1)	影響を受ける可能性のある野生動植物等の特定	42
(2)	影響の具体的内容の評価	42
(3)	影響の生じやすさの評価	42
(4)	生物多様性影響が生ずるおそれの有無等の判断	42
3	交雑性	42
(1)	影響を受ける可能性のある野生動植物等の特定	42
(2)	影響の具体的内容の評価	42
(3)	影響の生じやすさの評価	42
(4)	生物多様性影響が生ずるおそれの有無等の判断	42
第三	生物多様性影響の総合的評価	43
引用文献		44
緊 急 措	置計画書	54
資料リス	}	57

第一種使用規程承認申請書

平成 24 年 11 月 26 日

農林水産大臣 郡司 彰 殿 環境大臣 長浜 博行 殿

氏名 日本モンサント株式会社 申請者 代表取締役社長 山根 精一郎 印 住所 東京都中央区銀座四丁目 10 番 10 号

第一種使用規程について承認を受けたいので、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律第 4 条第 2 項の規定により、次のとおり申請します。

遺伝子組換え生物	除草剤グリホサート誘発性雄性不稔、チョウ目及びコウチ
等の種類の名称	ュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホ
	サート耐性トウモロコシ
	(cry1A.105, 改変 cry2Ab2, cry1F, pat, 改変 cp4 epsps, 改変
	cry3Bb1, cry34Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis)
	(MON87427 × MON89034 × B.t. Cry1F maize line 1507 ×
	MON88017 × B.t. Cry34/35Ab1 Event DAS-59122-7, OECD
	UI: MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 ×
	MON-88Ø17-3 × DAS-59122-7) (MON87427, MON89034,
	B.t. Cry1F maize line 1507, MON88017 及び B.t. Cry34/35Ab1
	Event DAS-59122-7 それぞれへの導入遺伝子の組合せを有
	するものであって当該トウモロコシから分離した後代系統
	のもの (既に第一種使用規程の承認を受けたものを除く。)
	を含む。)
遺伝子組換え生物	食用又は飼料用に供するための使用、栽培、加工、保管、
等の第一種使用等	運搬及び廃棄並びにこれらに付随する行為
の内容	
遺伝子組換え生物	_
等の第一種使用等	
の方法	

生物多様性影響評価書

第一 生物多様性影響の評価に当たり収集した情報

- 5 1 宿主又は宿主の属する分類学上の種に関する情報
 - (1) 分類学上の位置付け及び自然環境における分布状況
 - ① 和名、英名及び学名

10

和名:トウモロコシ

英名: corn, maize

学名: Zea mays subsp. mays (L.) Iltis

15 ② 宿主の品種名又は系統名

親系統の作出に使った品種名は以下のとおりである。

MON87427 は品種 LH198 × Hi-II を用いた。

20 MON89034 は品種 LH172 を用いた。

B.t. Cry1F maize line 1507 は品種 Hi-II を用いた。

MON88017 は実験用交配雑種である自殖系統 A×F1 雑種 Hi-II を用いた。

B.t. Cry34/35Ab1 Event DAS-59122-7 は品種 Hi-II を用いた。

25 ③ 国内及び国外の自然環境における自生地域

トウモロコシはイネ科トウモロコシ属に属する。原産地については決定的な説はなく、米国の南西部、メキシコ、中米及び南米にかけての複数地域がそれぞれ独立した起源であるとする説と、メキシコ南部単独を起源とする説がある (OECD, 2003)。なお、わが国における自然分布の報告はない。

- (2) 使用等の歴史及び現状
- ① 国内及び国外における第一種使用等の歴史

35

30

トウモロコシの栽培起源は今から 9,000 年前とされている (OECD, 2003)。 その後、人類の手により育種、品種改良が行われ、紀元前 1500 年~200 年頃 には、現代の栽培型に近いトウモロコシが出現し、メキシコ、メソアメリカの地から南北アメリカ大陸の各地に伝播した。長い栽培の歴史の中でフリント、デント、ポップ、スイート種などの多数の変異種が生じたと考えられている。わが国へは天正7年(1579年)に長崎か四国に伝来したのが最初であるとされ、栽培の歴史は長い(菊池,1987)。

② 主たる栽培地域、栽培方法、流通実態及び用途

現在、飼料としての利用が主流であるが、食用、食用油、澱粉などの食品 としての用途も多岐にわたる (OECD, 2003; 菊池, 1987)。現在、トウモロコシ は世界で最も広く栽培されている穀物で、米国、中国、ブラジル、アルゼン チン及びヨーロッパ諸国などを中心に、北緯 58 度から南緯 40 度に至る範囲で栽培可能である (OECD, 2003; 丸山, 1981)。

15 国連食糧農業機関 (FAO) の統計情報に基づくと、2010 年における全世界 のトウモロコシの栽培面積は約1億6千万 ha であり、上位国を挙げると米国 が 3,320 万 ha、中国が 3,252 万 ha、ブラジルが 1,268 万 ha、メキシコが 720 万 ha、インドが 718 万 ha、インドネシアが 423 万 ha、ナイジェリアが 352 万 ha となっている (FAOSTAT, 2012)。

20

25

30

5

現在、わが国で栽培されているトウモロコシは統計上、飼料用青刈りデントコーンと生食用のスイートコーンがあり、2011年の青刈りデントコーンの作付面積は約9万2,200haで、収穫量は約471万トンであり(農林水産省,2012a)、2011年のスイートコーンの作付面積は約2万5,000haで、収穫量は約24万300トンである(農林水産省,2012b)。

わが国は 2011 年に海外から約 1,528 万トンのトウモロコシを飼料用、食品・工業用、そして栽培用として輸入している。その内訳は、飼料用として約 1,076 万トン、食品・工業用として約 452 万トン、そして栽培用として約 2,021 トンである。なお、栽培用として輸入している上位 3 カ国を挙げるとフランスが 872 トン、ニュージーランドが 221 トン、米国が 183 トンとなっている (財務省, 2012)。

わが国での飼料用トウモロコシの慣行栽培法は以下のとおりである。北海 35 道から九州に至る慣行播種期は、4月中~下旬から5月中~下旬が最も多い。 適正栽植密度は10a当たり6,000~8,000本である。中耕、除草、土寄せは一連 の作業で行い、生育初期に2~3回行う。収穫期は9月下旬から10月下旬で、 関東や西南暖地ではやや早く、北海道や東北、東山ではやや遅い (瀧澤, 2001)。

なお、国内主要種苗メーカーの品種リストに基づくと、現在、一般に栽培用として市販されているトウモロコシのほとんどは一代雑種品種 (F1) であるため、収穫種子が翌年に栽培用として播種されることは一般的でない。

- (3) 生理的及び生態学的特性
- イ 基本的特性

10

5

- ロ 生息又は生育可能な環境の条件
- トウモロコシ種子の発芽の最低温度は 10~11℃、最適温度は 33℃ とされている。実際に播種されるのは 13~14℃ 以上である (中村, 2001a)。品種や地域によって栽培時期は多少異なるが、主に春に播種されて秋に収穫される一年生の作物である (瀧澤, 2001)。また、トウモロコシはもともと短日植物であり、その感光性は晩生種ほど敏感で、早生品種ほど鈍感である (柿本ら, 2001)。これら温度条件等の他、トウモロコシは吸水により種子重が乾燥重の 1.6~2.0 倍になったときに幼根 (初生根又は種子根) が抽出し、子実発芽となる (戸澤, 2005)。また、トウモロコシの栽培には腐植に富む土壌が適し、pH5.5~8.0 の範囲で栽培可能である (千葉, 1980)。
- 25 現在のトウモロコシは長期の栽培作物化により作られた作物であるため、 自然条件下における自生能力を失っている (OECD, 2003)。
 - ハ 捕食性又は寄生性

30 -

- ニ 繁殖又は増殖の様式
- ① 種子の脱粒性、散布様式、休眠性及び寿命

35

完熟した種子は雌穂の苞皮で覆われており、脱粒性はない。トウモロコシは長い間栽培植物として利用してきた過程で、自然条件下における自生能力

を失っており、その種子を分散させるためには人間の仲介が必要である (OECD, 2003)。種子の休眠性は知られていない。また、収穫時に雌穂又は種子が地上に落下しても、土壌温度が 10° C に達し、適度な水分条件を伴うまで発芽しないため、その多くが自然状態では腐敗し枯死する (中村, 2001a; 菊池, 1987)。また、仮に発芽しても生長点が地上に出た後は 6~8 時間以上 0° C 以下の外気にさらされると生存できない (OECD, 2003)。子実の活力を 6~8 年保存するには、子実水分 12%、温度 10° C、相対湿度 55%以内に保つことが必要である (OECD, 2003; 中村, 2001a)。

10 ② 栄養繁殖の様式並びに自然条件において植物体を再生しうる組織又は器官からの出芽特性

5

15

トウモロコシは栄養繁殖はせず、種子繁殖する。自然条件において植物体 を再生しうる組織又は器官からの出芽特性があるという報告はこれまでのと ころない。

- ③ 自殖性、他殖性の程度、自家不和合性の有無、近縁野生種との交雑性及びアポミクシスを生ずる特性を有する場合はその程度
- 20 トウモロコシは雌雄同株植物の一年生作物で、典型的な風媒花であり、95~99%は他家受粉によって作られた種子により繁殖するが、自家受粉も可能である (OECD, 2003; 千藤, 2001; 西牧, 1987)。トウモロコシと交雑可能なのは、同じ Z. mays 種に含まれ Z. mays subsp. mays (L.) Iltis の亜種として分類される一年生のテオシント (Z. mays subsp. mexicana) 及び Tripsacum 属である。トウモロコシとテオシントは近接している場合に自由に交雑するが、Tripsacum 属との交雑は非常に稀である (OECD, 2003)。テオシントはメキシコからグァテマラにかけて分布しており、Tripsacum 属の分布地域は北アメリカ東南部、コロンビアからボリビアにかけてのアンデス東側の低地、この属の中心地と考えられるメキシコ、グァテマラに大きく三分されている (柿本, 1981)。わが国では、テオシント及び Tripsacum 属の野生種は報告されていない。
 - ④ 花粉の生産量、稔性、形状、媒介方法、飛散距離及び寿命
- 35 トウモロコシの一本の雄穂には1,200~2,000個の小穂があり、1,600万~3,000万個の花粉粒を形成する(中村,2001b; 柿本ら,2001)。花粉の寿命は盛夏のほ場条件下では24時間以内であるが、環境により大きく異なる(中村,2001b)。

花粉の 1 粒当たりの重量は約 3.4×10^{-7} g であり (松井ら, 2003)、球形で直径は $90\sim100\mu m$ である (Raynor et al., 1972)。トウモロコシは風媒による受粉が主であり、雄穂の開花によって飛散した花粉は、雌穂から抽出した絹糸に付着して発芽し、24 時間以内に受精を完了する (OECD, 2003)。また、トウモロコシの花粉は風により飛散するが、隔離距離は、林、高層建築物などの遮蔽物の有無などにより異なり、 $200\sim400m$ とされている (千藤, 2001)。

ホ 病原性

10 —

35

5

へ 有害物質の産生性

トウモロコシにおいて、自然条件下で周囲の野生動植物等の生育又は生息 に影響を及ぼす有害物質の産生は報告されていない。

トその他の情報

トウモロコシは1579年にわが国に導入されて以来、長期間の使用経験があるが、これまでトウモロコシが自然条件下で自生した例は報告されていない。

2 遺伝子組換え生物等の調製等に関する情報

除草剤グリホサート誘発性雄性不稔、チョウ目及びコウチュウ目害虫抵抗 性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (cry1A.105, 改変 cry2Ab2, cry1F, pat, 改変 cp4 epsps, 改変 cry3Bb1, cry34Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis) (OECD UI: MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-88Ø17-3 × DAS-59122-7) (以下、「本ス タック系統トウモロコシ」という。) は、以下の 5 つの遺伝子組換えトウモ ロコシを従来の交雑育種法を用いて育成したスタック系統である。

- a) 除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ MON87427 (改変 *cp4 epsps*, *Zea mays* subsp. *mays* (L.) Iltis) (MON87427, OECD UI: MON-87427-7) (以下、「MON87427」という。)
- b) チョウ目害虫抵抗性トウモロコシ (*cry1A.105*, 改変 *cry2Ab2*, *Zea mays* subsp. *mays* (L.) Iltis) (MON89034, OECD UI: MON-89Ø34-3) (以下、「MON89034」という。)

- c) チョウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ (*cry1F*, *pat*, *Zea mays* subsp. *mays* (L) Iltis) (*B.t.* Cry1F maize line 1507, OECD UI: DAS-Ø15Ø7-1) (以下、「Cry1F line 1507」という。)
- d) 除草剤グリホサート耐性及びコウチュウ目害虫抵抗性トウモロコシ (改変 *cp4 epsps*, 改変 *cry3Bb1*, *Zea mays* subsp. *mays* (L.) Iltis.) (MON88017, OECD UI: MON-88Ø17-3) (以下、「MON88017」という。)
- e) コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ (*cry34Ab1, cry35Ab1, pat, Zea mays* subsp. *mays* (L.) Iltis) (*B.t.* Cry34/35Ab1 Event DAS-59122-7, OECD UI: DAS-59122-7) (以下、「Event DAS-59122-7」という。)

MON87427 の雄性生殖組織では、改変 cp4 epsps 遺伝子の発現が e35S プロ モーターと hsp70イントロンの組合せによって制御されているため、改変 CP4 EPSPS 蛋白質は発現しないか、発現しても微量であり、除草剤グリホサート 15 耐性は付与されていない。そのため、MON87427 は8 葉期 (V8) 頃から 13 葉 期 (V13) 頃にかけての栄養生長期における除草剤グリホサート散布により 雄性不稔が誘発される。この雄性不稔が誘発された MON87427 をハイブリッド種 子生産の場で雌親として利用することにより、現在のハイブリッド種子の生産に用い られている手作業や機械で行う除雄の必要性がなくなるか、大幅に削減することが 20 できる。したがって、この MON87427 特有の除草剤グリホサート耐性能を育種又は 種子生産の際に利用することにより、2009年7月30日に第一種使用規程の承認を 受けたチョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリ ホサート耐性トウモロコシ (MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-88Ø17-3 × DAS-59122-7) との F1 ハイブリッド種子 (本スタック系統トウモロコシ) を従来 25 の除雄作業に比べて効率的に生産することが可能となる。しかし、本掛け合わせ 品種では MON88017 由来の除草剤グリホサート耐性が全組織中に付与されて いるため、除草剤グリホサートの散布によって雄性不稔が誘発されることは ない。

30 なお、本スタック系統トウモロコシは F1 ハイブリッドとして商品化されることから、収穫される種子には遺伝的分離により本スタック系統トウモロコシの親系統それぞれへの導入遺伝子の組合せからなるスタック系統トウモロコシが含まれる。

35 (1) 供与核酸に関する情報

5

10

イ 構成及び構成要素の由来

MON87427、MON89034、Cry1F line 1507、MON88017及びEvent DAS-59122-7 のそれぞれの作出に用いられた供与核酸の構成と構成要素の由来は、表 $1\sim$ 表 5 (p10~17) に示したとおりである。

ロ 構成要素の機能

5

15

① 目的遺伝子、発現調節領域、局在化シグナル、選抜マーカーその他の供与 10 核酸の構成要素それぞれの機能

MON87427、MON89034、Cry1F line 1507、MON88017及びEvent DAS-59122-7 のそれぞれの作出に用いられた供与核酸の構成要素の機能は、それぞれ表 1~表 5 (p10~17) に示した。そのうち、目的遺伝子である cry1A.105 遺伝子、改変 cry2Ab2 遺伝子、cry1F遺伝子、pat遺伝子、改変 cp4 epsps 遺伝子、改変 cry3Bb1 遺伝子、cry34Ab1 遺伝子及び cry35Ab1 遺伝子の詳細についても、それぞれ表 1~表 5 (p10~17) に記載した。

表 1 MON87427 の作出に用いた PV-ZMAP1043 の各構成要素の由来及び機能¹

構成要素	プラスミド 中の位置	由来及び機能
		T-DNA 領域
B ^{注 1} -Left Border	1-442	T-DNA を伝達する際に利用される左側境界領域 を含む <i>Agrobacterium tumefaciens</i> に由来にする DNA 断片 (Barker et al., 1983)。
Intervening Sequence	443-483	DNA クローニングの際に利用された配列
P ^{注 2} -e35S	484-1,104	トウモロコシの花粉での活性がわずかである (Hamilton et al., 1992) カリフラワーモザイクウイルス (CaMV 35S) のプロモーター (Odell et al., 1985) をもとに作成されたプロモーター。 CaMV 35S プロモーターの活性を高める機能を有するドメインをタンデムの状態で 2 つ有しているため (McPherson and Kay, 1994)、組織特異的な発現様式を変えることなく転写活性が高められている。 e35S プロモーターも CaMV 35S プロモーターと同様にトウモロコシの花粉及びタペート細胞での活性が低いことが確認されている (CaJacob et al., 2004)。
Intervening Sequence	1,105-1,125	DNA クローニングの際に利用された配列
I ^{注 3} -hsp70	1,126-1,929	Z. mays (トウモロコシ) の熱ショック蛋白質遺伝子 (hsp70) のイントロン (Brown and Santino, 1997)。
Intervening Sequence	1,930-1,953	DNA クローニングの際に利用された配列
TS ^{注 4} -CTP2	1,954-2,181	Arabidopsis thaliana (シロイヌナズナ) の 5-エノールピルビルシキミ酸-3-リン酸合成酵素 (EPSPS) 遺伝子 (ShkG) の葉緑体輸送ペプチドをコードする配列 (Klee et al., 1987)。改変 CP4 EPSPS 蛋白質を葉緑体へと輸送する。
CS ^{注 5} -改変 cp4 epsps	2,182-3,549	Agrobacterium CP4 株由来の5-エノールピルビル シキミ酸-3-リン酸合成酵素 (CP4 EPSPS) をコ ードしている aroA (epsps) 遺伝子のコード配列 (Barry et al., 2001; Padgette et al., 1996a)。
Intervening Sequence	3,550-3,555	DNA クローニングの際に利用された配列
T ^{注 6} -nos	3,556-3,808	転写を終結させポリアデニル化を誘導する A. tumefaciens 由来のノパリン合成酵素遺伝子の 3' 非翻訳領域 (Bevan et al., 1983)。
Intervening Sequence	3,809-3,835	DNA クローニングの際に利用された配列
B-Right Border	3,836-4,192	T-DNA を伝達する際に利用される右側境界領域を含む A. tumefaciens に由来の DNA 断片 (Depicker et al., 1982; Zambryski et al., 1982)。

¹本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

表 1 MON87427 の作出に用いた PV-ZMAP1043 の各構成要素の由来及び機能 (続き)

構成要素	プラスミド 中の位置	由来及び機能
	:	外側骨格領域
Intervening Sequence	4,193-4,328	DNA クローニングの際に利用された配列
aadA	4,329-5,217	トランスポゾン Tn7 由来の 3"(9)- <i>O</i> -ヌクレオチジルトランスフェラーゼ (アミノグリコシド改変酵素) の細菌プロモーター及びコーディング配列並びに 3"非翻訳領域 (Fling et al., 1985)。スペクチノマイシン及びストレプトマイシン耐性を付与する。
Intervening Sequence	5,218-5,747	DNA クローニングの際に利用された配列
OR ^{注 7} -ori-pBR322	5,748-6,336	pBR322 から単離された複製開始領域であり、 Escherichia coli においてベクターに自律増殖能 を付与する (Sutcliffe, 1979)。
Intervening Sequence	6,337-6,763	DNA クローニングの際に利用された配列
CS-rop	6,764-6,955	ColE1 プラスミドに由来するプライマー蛋白質のリプレッサーのコーディング配列であり、 E.coli 中においてプラスミドのコピー数を維持する (Giza and Huang, 1989)。
Intervening Sequence	6,956-8,463	DNA クローニングの際に利用された配列
OR-ori V	8,464-8,860	広宿主域プラスミド RK2 に由来する複製開始領域であり、Agrobacterium においてベクターに自律増殖能を付与する (Stalker et al., 1981)。
Intervening Sequence	8,861-8,946	DNA クローニングの際に利用された配列

注¹B-Border (境界配列)

 $^{^{\}pm 2}$ P-Promoter (プロモーター) $^{\pm 3}$ I-Intron (イントロン)

^{注 4}TS-Targeting Sequence (ターゲティング配列)

注 ⁵ CS-Coding Sequence (コード配列)

^{注6}T-Transcription Termination Sequence (転写終結配列)

注⁷OR-Origin of Replication (複製開始領域)

表 2 MON89034 の作出に用いた PV-ZMIR245 の各構成要素の由来及び機能²

構成要素	サイズ (bp)	由来及び機能					
	T-DNA I 領域						
B ^a -Right Border (右側境界領域)	357	<i>Agrobacterium tumefaciens</i> に由来する、ノパリン型 T-DNA 領域の右側 境界配列を含む DNA 断片。右側境界配列は、T-DNA が <i>A. tumefaciens</i> から植物ゲノムへの T-DNA の伝達の際、伝達の開始点として利用され る(Depicker et al., 1982)。					
P ^b -e35S	621	二重エンハンサー領域 (Kay et al., 1987) を持つ、カリフラワーモザイクウイルス (CaMV) 35SRNA (Odell et al., 1985) のプロモーターと 9bp リーダー配列。 恒常的に目的遺伝子を発現させる。					
L ^c -Cab	61	コムギ葉緑素 a/b 結合蛋白質の 5'末端非翻訳リーダー領域。目的遺伝 子の発現を活性化させる (Lamppa et al., 1985)。					
I ^d -Ract1	480	イネ・アクチン遺伝子のイントロン (McElroy et al., 1991)。目的遺伝 子の発現を活性化させる。					
CS ^e -cry1A.105	3,534	Cry1A.105 蛋白質をコードする遺伝子。					
T ^f -Hsp17	210	コムギ熱ショック蛋白質 17.3 の 3'末端非翻訳領域。転写を終結させ、 ポリアデニル化を誘導する (McElwain and Spiker, 1989)。					
P ^b -FMV	564	Figwort Mosaic Virus 由来の 35S プロモーター (Rogers, 2000)。植物体の全組織で恒常的に目的遺伝子を発現させる。					
I ^d -Hsp70	804	トウモロコシ熱ショック蛋白質 70 遺伝子の第 1 イントロン (Brown and Santino, 1997)。目的遺伝子の発現を活性化させる。					
TS ^g -SSU-CTP	401	トウモロコシのリブロース 1,5-二リン酸カルボキシラーゼの小サブユニットの輸送ペプチドで、第1イントロン配列を含む (Matsuoka et al., 1987)。下流に連結した蛋白質を色素体へと輸送する。					
CS°-改変 cry2Ab2	1,908	B. thuringiensis に由来する改変 Cry2Ab2 蛋白質をコードする遺伝子 (Widner and Whitely, 1989)。					
T ^f -nos	253	A. tumefaciens T-DNA 由来のノパリン合成酵素 (nos) 遺伝子の 3'非転写領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する (Bevan et al., 1983)。					
Pa Left Border A. tumefaciens に由来する左側境界配列を		A. tumefaciens に由来する左側境界配列を含む DNA 断片。左側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへ伝達される際の終結点である (Barker et al., 1983)。					

aB – border(境界配列)

_

 $^{^{}b}P$ – promoter (\mathcal{T} ロモーター)

cL – leader (リーダー配列)

 $^{^{}d}I$ – intron $(\checkmark \ \ \ \ \ \ \ \ \ \ \)$

eCS – coding sequence (コーディング配列)

fT – transcript termination sequence(転写終結配列)

gTS – targeting sequence (ターゲティング配列)

²本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

表 2 MON89034 の作出に用いた PV-ZMIR245 の各構成要素の由来及び機能 (続き)

構成要素	サイズ (bp)	由来及び機能
		T-DNA II 領域*
B-Right Border (右側境界領域)	357	A. tumefaciens に由来する、ノパリン型 T-DNA の右側境界配列を含む DNA 断片。右側境界配列は、T-DNA が A. tumefaciens から植物ゲノム への T-DNA の伝達の際、伝達の開始点として利用される (Depicker et al., 1982)。
T-nos	253	A. tumefaciens T-DNA 由来のノパリン合成酵素 (nos) 遺伝子の 3'転写 領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する (Bevan et al., 1983)。
CS-nptII	795	E. coli のトランスポゾン Tn5 に由来する遺伝子 (Beck et al., 1982)。ネオマイシンフォスフォトランスフェラーゼ II をコードし、植物にカナマイシン耐性を付与する。遺伝子導入の際、組換え体植物を選抜するためのマーカーとして用いられる (Fraley et al., 1983)。
P-35S	324	カリフラワーモザイクウイルス (CaMV) の 35S プロモーター領域 (Odell et al., 1985)。恒常的に目的遺伝子を発現させる。
B-Left Border (左側境界領域)	442	A. tumefaciens に由来する左側境界配列を含む DNA 断片。左側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへ伝達される際の終結点である (Barker et al., 1983)。
		外側骨格領域
OR ^a -ori V	397	広域宿主プラスミド RK2 から単離された複製開始領域であり、A. tumefaciens においてベクターに自律増殖能を付与する (Stalker et al., 1981)。
CS-rop	192	E. coli 中でのプラスミドのコピー数の維持のためにプライマー蛋白質を抑制するコーディング配列 (Giza and Huang, 1989)。
OR ^a -ori-PBR322	589	pBR322 から単離された複製開始領域であり、 <i>E.coli</i> においてベクター に自律増殖能を付与する (Sutcliffe, 1979)。
aadA	889	トランスポゾン Tn7 由来のアミノグリコシド改変酵素である 3"(9)- <i>O</i> -nucleotidyltransferase の細菌プロモーター、コード領域及びターミネーター。スペクチノマイシンあるいはストレプトマイシン耐性を付与する (Fling et al., 1985)。

^aOR – Origin of Replication (複製開始領域)

^{*} MON89034 には T-DNA II 領域は導入されていない。

表 3 Cry1F line 1507 の作出に用いた PHP8999 の各構成要素の由来及び機能³

構成要素	サイズ	由来及び機能
改変 cryIF 遺伝子発現力	(kbp) フセット	
UBIZM1(2) Promoter	1.98	Zea mays 由来のユビキチン構成的プロモーター ¹⁾ (イントロン及び 5°非翻訳領域を含む)(Christensen et al., 1992)。
改変 cry1F	1.82	Bacillus thuringiensis var. aizawai 由来の改変 Cry1F 蛋白質をコードする遺伝子。植物における 発現を高めるため、最適化されている (GenBank AAA22347)。
ORF25PolyA Terminator	0.72	Agrobacterium tumefaciens pTi5955 由来の転写を 停止するためのターミネーター (Barker et al., 1983)。
pat 遺伝子発現カセット		
CAMV35S Promoter	0.53	カリフラワーモザイクウイルス由来の 35S 構成的プロモーター $^{1)}$ (Hohn et al., 1982)。
pat	0.55	Streptomyces viridochromogenes 由来のホスフィノトリシンアセチルトランスフェラーゼ (PAT 蛋白質) をコードする遺伝子。植物における発現を高めるため、最適化されている (Eckes et al., 1989)。
CAMV35S Terminator	0.21	カリフラワーモザイクウイルス由来の転写を停止するための 35S ターミネーター (Hohn et al., 1982)。

¹⁾ 構成的プロモーター: 植物体の全体において、目的遺伝子を発現させるプロモーター。

³本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

表 4 MON88017 の作出に用いた PV-ZMIR39 の各構成要素の由来及び機能⁴

# 4 # #	サイズ				
構成要素	(Kbp)	由来及び機能			
改変 cp4 epsps 遺伝子カセット					
D. ma at	0.00	イネ由来のアクチン 1 遺伝子のプロモーター領域。目的遺伝子を			
P-ract	0.92	発現させる (McElroy et al., 1990)。			
		イネ・アクチン遺伝子のイントロン。スプライシングの効率を高			
ract1 intron	0.48	めることによって、目的遺伝子の発現を活性化させる (McElroy et			
		al., 1991) _o			
		シロイヌナズナの epsps 遺伝子の中で、EPSPS 蛋白質の N 末端側に			
CTP2	0.23	存在する葉緑体輸送ペプチド部分をコードする塩基配列 (Klee et			
		al., 1987)。目的蛋白質を細胞質から葉緑体へと輸送する。			
改変 cp4	1.37	Agrobacterium CP4 菌株由来の 5-エノールピルビルシキミ酸-3-リン酸			
epsps	1.57	合成酵素遺伝子 (Padgette et al., 1996a; Barry et al., 1997)。			
		Agrobacterium tumefaciens T-DNA 由来のノパリン合成酵素(NOS)			
NOS 3'	0.25	遺伝子の 3'非翻訳領域で、mRNA の転写を終結させ、ポリアデニ			
		ル化を誘導する (Bevan et al., 1983)。			
		改変 cry3Bb1 遺伝子カセット			
	0.62	カリフラワーモザイクウイルス (CaMV) のプロモーター (Odell et			
P-e35S		al., 1985)。全組織中に目的遺伝子を恒常的に発現させる機能を持			
		つ。			
wt CAB	0.06	コムギ葉緑素 a/b 結合蛋白質の 5'末端非翻訳リーダー領域。目的遺			
leader	0.00	伝子の発現を活性化させる (Lamppa et al., 1985)。			
		イネ・アクチン遺伝子のイントロン。スプライシングの効率を高め			
ract1 intron	0.48	ることによって、目的遺伝子の発現を活性化させる (McElroy et al.,			
		1991) _°			
改変 cry3Bb1	1.96	Bacillus thuringiensis の、改変した Cry3Bb1 蛋白質をコードする遺			
以及 CT y S D O T	1.50	伝子(Donovan et al., 1989)。			
tahsp 17 3'	0.21	コムギ熱ショック蛋白質 17.3 の 3'末端非翻訳領域。転写を終結さ			
unsp 1 / 5	0.21	せ、ポリアデニル化を誘導する (McElwain and Spiker, 1989)。			

-

⁴本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

表 4 MON88017 の作出に用いた PV-ZMIR39 の各構成要素の由来及び機能 (続き)

		「F四で用いたIV-ZMINS)。プロ特殊女衆。プロ水次の機能(腕で)	
構成要素	サイズ	由来及び機能	
111/4/2010	(Kbp)		
T-DNA の夕	卜骨格領域	ξ ·	
		Ti プラスミドに由来する、ノパリン型 T-DNA の右境界配列の DNA	
RB	0.36	断片。右境界配列は、Agrobacterium tumefaciens から植物ゲノムへ	
KD	0.30	の T-DNA の伝達の際、伝達の開始点として利用される (Depicker et	
		al., 1982) _°	
		Staphylococcus aureus 由来の、Tn7 アデニルトランスフェラーゼ	
aad	0.89	(AAD)をコードする遺伝子であり、スペクチノマイシン或いはス	
		トレプトマイシン耐性を付与する (Fling et al., 1985)。	
ori-322	0.63	pBR322 から単離された複製開始領域であり、E.coli においてベク	
011-322		ターに自律増殖能を付与する (Sutcliffe, 1979)。	
ROP	0.19	E. coli 中でのプラスミドのコピー数の維持の為にプライマータン	
ROP		パク質を抑制するコーディング配列 (Giza and Huang, 1989)。	
		広域宿主プラスミド RK2 から単離された複製開始領域であり、	
ori-V	0.40	Agrobacterium tumefaciens においてベクターに自律増殖能を付与す	
		る (Stalker et al., 1981)。	
		Ti プラスミドに由来する左境界配列の DNA 断片。左境界配列は、	
LB	0.44	T-DNAがAgrobacterium tumefaciensから植物ゲノムへ伝達される際	
		の終結点である (Barker et al., 1983)。	
LB	0.44	· ·	

表 5 Event DAS-59122-7 の作出に用いた PHP17662 の各構成要素の由来及び機能 5

構成要素	サイズ (kbp)	由来及び機能		
<i>cry34Abl</i> 遺伝子発現カセット				
UBIIZM PRO	1.98	Zea mays 由来のユビキチン構成的プロモーター1)		
OBITEM TITO		(イントロン及び5'非翻訳領域を含む)		
cry34Ab1	0.37	Bacillus thuringiensis PS149B1 株由来の Cry34Ab1		
		蛋白質をコードする遺伝子		
PIN II TERM	0.32	Solanum tuberosum 由来の 転写を停止するための		
		プロテアーゼインヒビターⅡターミネーター(イ		
		ントロン及び 5'非翻訳領域を含む)		
<i>cry35Abl</i> 遺伝子発現カセット				
TA Peroxidase PRO	1.30	根における発現が知られている Triticum aestivum		
		由来のペルオキシダーゼプロモーター (GenBank		
		X53675 の 45-1342 塩基配列)		
cry35Ab1	1.15	Bacillus thuringiensis PS149B1 株由来の Cry35Ab1		
		蛋白質をコードする遺伝子		
PIN II TERM	0.32	Solaunum tuberosum 由来の 転写を停止するための		
		プロテアーゼインヒビターⅡターミネーター(イ		
		ントロン及び 5'非翻訳領域を含む)		
pat 遺伝子発現カセット				
35S PRO	0.53	カリフラワーモザイクウイルス由来の 35S 構成的		
		プロモーター1)		
pat	0.55	Streptomyces viridochromogenes 由来のホスフィノ		
		トリシンアセチルトランスフェラーゼ(PAT 蛋白		
		質) をコードする遺伝子		
35S TERM	0.21	カリフラワーモザイクウイルス由来の転写を停止		
		するための 358 ターミネーター		

¹⁾ 構成的プロモーター: 植物体の全体において、目的遺伝子を発現させるプロモーター。

-

⁵本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

② 目的遺伝子及び選抜マーカーの発現により産生される蛋白質の機能及び 当該蛋白質がアレルギー性を有することが明らかとなっている蛋白質と 相同性を有する場合はその旨

5 一害虫抵抗性蛋白質6—

10

15

20

25

【Cry1A.105 蛋白質】

MON89034 で発現する Cry1A.105 蛋白質は、Cry1Ab 蛋白質のドメイン I と II、Cry1F 蛋白質のドメイン III、Cry1Ac 蛋白質の C 末端ドメインにより構成 される合成 Bt 蛋白質であり、異なる Bt 蛋白質のドメインを組み合わせることにより標的チョウ目害虫に対する殺虫活性を高める目的で開発された。

Cry1A.105 蛋白質の殺虫スペクトラムについては、人工飼料に混合した Cry1A.105 蛋白質を 5 種類のチョウ目昆虫を含む 15 種類の昆虫種に混餌投与 することにより調査を行った。その結果、Cry1A.105 蛋白質は、トウモロコシの主要チョウ目害虫であるコーンイヤーワーム (Helicoverpa zea) (MacRae et al., 2005)、ブラックカットワーム (タマヤナガ) (Agrotis ipsilon) (MacRae, 2005)、フォールアーミーワーム (ツマジロクサヨトウ) (Spodoptera frugiperda) (MacRae, 2005)、サウスウエスタンコーンボーラー (Diatraea grandiosella) (MacRae, 2005)、ヨーロピアンコーンボーラー (ヨーロッパアワノメイガ) (Ostrinia nubilalis) (MacRae et al., 2006a) の幼虫に対して殺虫活性を示したが、チョウ目昆虫以外のミツバチ (Richards, 2006a; Richards, 2006b) やテントウムシ (Paradise, 2006a) などの益虫に対しては殺虫活性を示さなかった。

以上のことから、Cry1A.105 蛋白質は構成要素であるチョウ目害虫に殺虫活性を示す Cry1Ab 蛋白質、Cry1F 蛋白質及び Cry1Ac 蛋白質と同様にチョウ目害虫のみに選択的に殺虫活性を示し、それ以外の昆虫種に対しては殺虫活性を持たないことが確認された。

【改変 Cry2Ab2 蛋白質】

MON89034で発現する改変 Cry2Ab2 蛋白質の殺虫スペクトラムについては、人工飼料に混合した改変 Cry2Ab2 蛋白質を、4 種類のチョウ目昆虫を含む 15 種類の昆虫種に混餌投与することにより調査を行った。その結果、改変 Cry2Ab2 蛋白質は、試験に用いた 4 種類の主要チョウ目害虫の中でコーンイヤーワーム (MacRae et al., 2006a)、フォールアーミーワーム (MacRae et al., 2006b)、及びヨーロピアンコーンボーラー (MacRae et al., 2006a) の幼虫に対して殺虫活性を示したが、ブラックカットワーム (MacRae et al., 2006b) に対しては殺虫活性を示さなかった。また、チョウ目害虫以外のミツバチ (Maggi, 2000a; Maggi, 2000b) やテントウムシ (Paradise, 2006b) などの益虫に対しても、殺虫活性を示さなかったことから、改変 Cry2Ab2 蛋白質は特定のチョウ目害虫のみに選択的に殺虫活性を示し、それ以外の昆虫種に対しては殺虫活性を持たないことが確認された。

なお、改変 *cry2Ab2* 遺伝子がコードする改変 Cry2Ab2 蛋白質は、クローニングの際に用いる制限酵素切断部位を付加するため、野生型 Cry2Ab2 蛋白質と比較してN末端のメチオニンの後にアスパラギン酸が1つ挿入されている。

【改変 Cry1F 蛋白質】

20

25

35

5

10

15

Cry1F line 1507 で発現する改変 Cry1F 蛋白質は、チョウ目害虫であるヨーロピアンコーンボーラー、フォールアーミーワーム及びビートアーミーワーム (シロイチモンジョトウ) (Spodoptera exigua) の幼虫等に高い殺虫活性を示す。チョウ目昆虫以外のコウチュウ目、ハチ目、アミメカゲロウ目及びトビムシ目等の昆虫、並びに哺乳類、鳥類、魚類等の非標的生物に対する毒性は認められていない (U.S. EPA, 2005a)。

なお、改変 Cry1F 蛋白質は、アミノ酸配列の 604 番目のフェニルアラニン がロイシンに置換されている。

30 【改変 Cry3Bb1 蛋白質】

MON88017で発現する改変 Cry3Bb1 蛋白質は米国のトウモロコシ栽培の主要コウチュウ目害虫であり、トウモロコシの根を食害するコーンルートワーム (Diabrotica sp.) に対する殺虫活性を示す。

改変 Cry3Bb1 蛋白質の殺虫スペクトラムは極めて狭く、コウチュウ目昆虫種の中でハムシ科の 2 属 (Leptinotarsa, Diabrotica) に分類されるコロラドポ

テトビートル (コロラドハムシ) (Leptinotarsa decemlineata) とコーンルート ワームのみに対して殺虫活性を示す (Head et al., 2001)。この 2 属の昆虫種との同属近縁種がわが国に生息していることはこれまで報告されていない (中根ら, 1963)。

なお、改変 Cry3Bb1 蛋白質は野生型 Cry3Bb1 蛋白質と比較して、6 ヵ所のアミノ酸が置換されている。そのうち 1 ヵ所はクローニングの際に制限酵素切断部位を付加したため、他の 5 ヵ所は殺虫活性を増強するために改変されている。

10 【Cry34Ab1 蛋白質+Cry35Ab1 蛋白質】

5

15

20

25

Event DAS-59122-7で発現する Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質のうち、Cry34Ab1 蛋白質は、単独でもコーンルートワームに対して活性を持つが、Cry35Ab1 蛋白質単独では、コーンルートワームに対して活性を示さない。両者を同時に作用させた場合、Cry34Ab1 蛋白質を単独で用いた際の殺虫効果と比較し、最大でおよそ 8 倍の効果を示す。その作用機作は、Cry34Ab1 蛋白質はリン脂質膜に対する細孔形成蛋白質として働き、Cry35Ab1 蛋白質は細孔を拡大し、膜の透過性を増大させると考えられている (Herman et al., 2002)。

Cry34Ab1/Cry35Ab1 蛋白質は、コウチュウ目害虫であるノーザンコーンルートワーム (*Diabrotica barberi*) とウエスタンコーンルートワーム (*D. virgifera virgifera*) の2種の幼虫に殺虫活性を示し、コウチュウ目昆虫以外のチョウ目、ハチ目、アミメカゲロウ目及びトビムシ目等の昆虫、並びに哺乳類、鳥類、魚類等の非標的生物に対する毒性は認められていない (U.S. EPA, 2005b)。

一除草剤耐性蛋白質一

【PAT 蛋白質】

30 Cry1F line 1507 及び Event DAS-59122-7 で発現する PAT 蛋白質 (ホスフィノスリシンアセチルトランスフェラーゼ) は、除草剤グルホシネートに対する耐性を付与する。除草剤グルホシネートは、グルタミン酸とアンモニアからグルタミンを合成するグルタミン合成酵素を阻害し、その結果、植物体内にアンモニアが蓄積して植物を枯死させる。PAT 蛋白質は、除草剤グルホシネートをアセチル化し、無毒なアセチルグルホシネートに変えることで、植物体にグルホシネートに対する耐性を付与する。

【改変 CP4 EPSPS 蛋白質】

MON88017で発現する改変 CP4 EPSPS 蛋白質は、除草剤グリホサートに対する耐性を付与する。植物はグリホサートを処理すると 5-エノールピルビルシキミ酸-3-リン酸合成酵素 (酵素番号: E.C.2.5.1.19、以下、「EPSPS 蛋白質」という。)が阻害されることにより蛋白質合成に必須の芳香族アミノ酸を合成できなくなり枯れてしまう。改変 CP4 EPSPS 蛋白質は、グリホサート存在下でも活性阻害を受けないため、結果として本蛋白質を発現する組換え植物ではシキミ酸合成が正常に機能して生育することができる。

なお、改変 cp4 epsps 遺伝子は、野生型 CP4 EPSPS 蛋白質の機能活性を変更せずに植物中での発現量を高めるために野生型 cp4 epsps 遺伝子の塩基配列に改変を加えたものであり、改変 CP4 EPSPS 蛋白質のアミノ酸配列に関しては N 末端から二番目のセリンがロイシンに改変されているのみである。

15

20

10

5

親系統で発現する Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質、Cry1F 蛋白質、改変 Cry3Bb1 蛋白質、Cry34Ab1 蛋白質、Cry35Ab1 蛋白質、PAT 蛋白質及び改変 CP4 EPSPS 蛋白質が既知のアレルゲンと類似のアミノ酸配列を共有するかどうかデータベース (AD_2012⁷, AD11⁸) を用いて比較したところ、既知アレルゲンと構造的に類似性のある配列は共有していなかった。

③ 宿主の持つ代謝系を変化させる場合はその内容

【Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質、Cry1F 蛋白質、改変 Cry3Bb1 蛋白 25 質、Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質】

Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質、Cry1F 蛋白質、改変 Cry3Bb1 蛋白質、Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質は、いずれも Bacillus thuringiensis に由来する結晶体の殺虫性蛋白質 (Bt 蛋白質) である。これらの Bt 蛋白質が殺虫活性を発揮するメカニズムについては数多くの研究がなされており (OECD, 2007)、これまでのところ Bt 蛋白質が他の機能を有するとの報告はな

_

30

⁷ AD_2012: Food Allergy Research and Resource Program Database (FARRP) (http://www.allergenonline.com) から得られた配列をもとに作成されたデータベースで、2011 年12 月の時点で 1,603 配列が含まれる。

⁸ AD11: Food Allergy Research and Resource Program Database (FARRP)
(http://www.allergenonline.com) から得られた配列をもとに作成されたデータベースで、2011 年 2 月の時点で 1,491 配列が含まれる。

い。よって、これらのBt蛋白質が酵素活性を持つとは考えられず、宿主の代謝系を変化させることはないと考えられる。

【PAT 蛋白質】

5

PAT 蛋白質は、除草剤グルホシネートの有効成分である L型ホスフィノスリシン (L型アミノ酸に分類) をアセチル化するが、他の L型アミノ酸をアセチル化することはなく、特に構造の類似しているグルタミン酸にも親和性はほとんどない (Thompson et al., 1987)。また、各種アミノ酸が過剰に存在する条件下においても PAT 蛋白質によるグルホシネートのアセチル基転移反応は阻害されることがないことから、グルホシネートに対して極めて高い基質特異性を有することが報告されている (OECD, 1999)。よって、その基質特異性の高さから、PAT 蛋白質が宿主の代謝系を変化させることはないと考えられる。

15

20

25

30

10

【改変 CP4 EPSPS 蛋白質】

改変 CP4 EPSPS 蛋白質と機能的に同一である EPSPS 蛋白質は、芳香族アミノ酸を生合成するためのシキミ酸経路を触媒する酵素蛋白質であるが、本経路における律速酵素ではなく、EPSPS 蛋白質の活性が増大しても、本経路の最終産物である芳香族アミノ酸の濃度が高まることはないと考えられている (Padgette et al., 1996b; Ridley et al., 2002)。また、EPSPS 蛋白質は基質であるホスホエノールピルビン酸塩とシキミ酸-3-リン酸塩 (以下、「S3P」という。)と特異的に反応することが知られており (Gruys et al., 1992)、これら以外に唯一EPSPS 蛋白質と反応することが知られているのは S3P の類似体であるシキミ酸である。しかし、EPSPS 蛋白質のシキミ酸及び S3P との反応について、反応の起こりやすさを示す特異性定数 (Specificity constant) k_{cat}/K_m の値で比較すると、EPSPS 蛋白質のシキミ酸との反応特異性は、EPSPS 蛋白質の S3P との反応特異性の約 200 万分の 1 に過ぎず (Gruys et al., 1992)、シキミ酸がEPSPS 蛋白質の基質として反応する可能性は極めて低い。よって、改変 CP4 EPSPS 蛋白質が宿主の代謝系を変化させることはないと考えられる。

- (2) ベクターに関する情報
- 35 イ 名称及び由来

親系統の作出に用いられたプラスミド・ベクターは以下のとおりである。

MON87427: E. coli 由来のベクターpBR322 をもとに構築された

PV-ZMAP1043

5 MON89034: E. coli 由来のベクターpBR322 をもとに構築された

PV-ZMIR245

Cry1F line 1507: E. coli 由来のベクターpUC19 をもとに構築された

PHP8999

MON88017: E. coli 由来のベクターpBR322 をもとに構築された

10 PV-ZMIR39

Event DAS-59122-7: A. tumefaciens 由来のベクターpSB1 をもとに構築された

PHP17662

口 特性

15

① ベクターの塩基数及び塩基配列

親系統の作出に用いられたプラスミド・ベクターの塩基数は以下のとおりである。

20 MON87427: PV-ZMAP1043; 8,946 bp

MON89034: PV-ZMIR245; 17,600 bp

Cry1F line 1507: PHP8999; 9,504 bp

MON88017: PV-ZMIR39; 12,368bp

Event DAS-59122-7: PHP17662; 50,311 bp

25

② 特定の機能を有する塩基配列がある場合は、その機能

選抜マーカーとして利用された抗生物質耐性遺伝子は以下のとおりである。

MON87427: スペクチノマイシンやストレプトマイシン耐性を付与

30 する aadA 遺伝子

MON89034: スペクチノマイシンやストレプトマイシン耐性を付与

する aadA 遺伝子及びカナマイシン耐性を付与する nptII

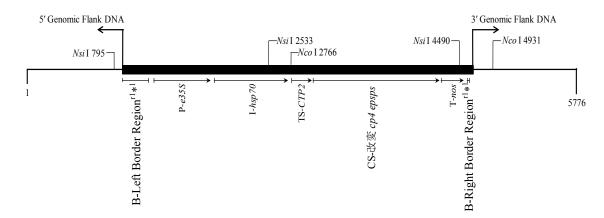
遺伝子

Cry1F line 1507: カナマイシン耐性を付与する *nptII* 遺伝子

35 MON88017: スペクチノマイシンやストレプトマイシン耐性を付与

する aadA 遺伝子

Event DAS-59122-7: テトラサイクリン耐性を付与する *tet* 遺伝子及びスペク チノマイシン耐性を付与する *spc* 遺伝子


なお、いずれの抗生物質耐性遺伝子も宿主には導入されていない。

5

- ③ ベクターの感染性の有無及び感染性を有する場合はその宿主域に関する 情報
- PV-ZMAP1043、PV-ZMIR245、PHP8999、PV-ZMIR39 及び PHP17662 の感 10 染性はいずれも知られていない。
 - (3) 遺伝子組換え生物等の調製方法
 - イ 宿主内に移入された核酸全体の構成

15

MON87427、MON89034、Cry1F line 1507、MON88017及びEvent DAS-59122-7 の宿主内に移入された供与核酸の構成要素の位置と制限酵素による切断部位を、それぞれ図 1~図 5 (p25~27) に示した。

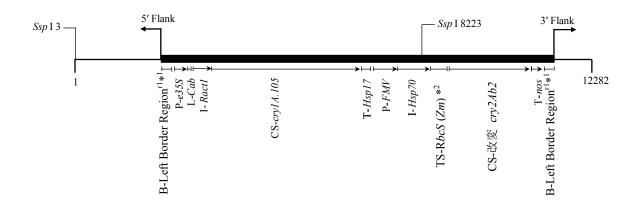

*1: r1 は、B-Left Border Region 及び B-Right Border Region が MON87427 において導入前と比 較して短くなっていることを意味する。

図 1 MON87427 に移入された核酸全体の構成図⁹

構成図中の直角に曲がった矢印は導入遺伝子の 5'及び 3'末端とそれに続く近傍のトウモロコシ内在性配列を示している。構成図中の構成要素及び制限酵素切断部位の位置は推定された位置で示している。

9本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

25

*¹: rl は、B-Left Border Region が MON89034 において導入前と比較して短くなっていること を意味する。

*2: TS-RbcS (Zm)は MON89034 の生物多様性影響評価書では"TS-SSU-CTP"としていた。

図 2 MON89034 に移入された核酸全体の構成図¹⁰

構成図中の直角に曲がった矢印は導入遺伝子の 5'及び 3'末端とそれに続く近傍のトウモロ コシ内在性配列を示している。構成図中の構成要素及び制限酵素切断部位の位置は推定された位置で示している。

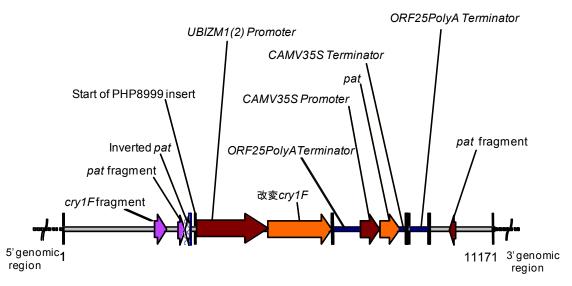
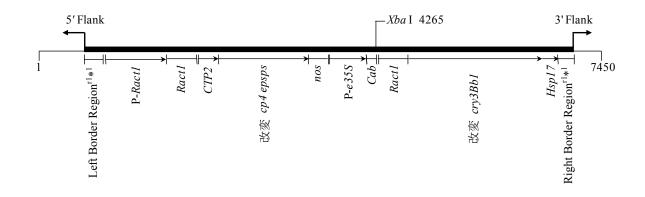



図 3 Cry1F line 1507 に移入された核酸全体の構成図¹¹

10本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

*1: rl は、Left Border Region 及び Right Border Region が MON88017 において導入前と比較して短くなっていることを意味する。

図 4 MON88017 に移入された核酸全体の構成図¹²

10 構成図中の直角に曲がった矢印は導入遺伝子の 5'及び 3'末端とそれに続く近傍のトウモロコシ内在性配列を示している。構成図中の構成要素及び制限酵素切断部位の位置は推定された位置で示している。

15

5

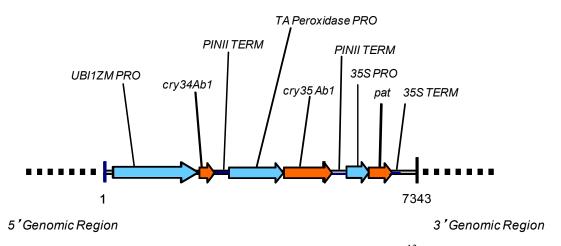


図 5 Event DAS-59122-7 に移入された核酸全体の構成図¹³

11本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する 12本図に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する

ロ 宿主内に移入された核酸の移入方法

5

30

宿主内への核酸の移入については以下の方法を用いて行った。

MON87427: アグロバクテリウム法によりプラスミド・ベクター

PV-ZMAP1043 の T-DNA 領域を移入した。

MON89034: アグロバクテリウム法によりプラスミド・ベクター

PV-ZMIR245 の T-DNA I 領域及び T-DNA II 領域を移入した。その後、T-DNA II 領域を遺伝的分離により除去し

た。

10 Cry1F line 1507: パーティクルガン法によりプラスミド・ベクター

PHP8999 の cry1F 及びpat 遺伝子発現カセットを移入し

た。

MON88017: アグロバクテリウム法によりプラスミド・ベクター

PV-ZMIR39 の T-DNA 領域を移入した。

15 Event DAS-59122-7: アグロバクテリウム法によりプラスミド・ベクター

PHP17662 の T-DNA 領域を移入した。

ハ 遺伝子組換え生物等の育成の経過

20 ① 核酸が移入された細胞の選抜の方法

形質転換細胞の選抜は、以下を添加した培地を用いて行った。

MON87427: グリホサート

MON89034: パロモマイシン

25 Cry1F line 1507: グルホシネート

MON88017: グリホサート

Event DAS-59122-7: グルホシネート

② 核酸の移入方法がアグロバクテリウム法の場合はアグロバクテリウムの 菌体の残存の有無

MON87427、MON89034、MON88017 及び Event DAS-59122-7 において、培地へカルベニシリンを添加することによりアグロバクテリウムの除去を行った。なお、親系統の評価において、MON87427、MON89034 及び MON88017

にアグロバクテリウム菌体が残存していないことは、カルベニシリン無添加の培地に MON87427、MON89034 及び MON88017 を移した後に、その培地上でアグロバクテリウムのコロニーが形成されていないことを観察することで確認した。また、親系統の評価において、Event DAS-59122-7 にアグロバクテリウム菌体が残存していないことは、カルベニシリン無添加の培地に Event DAS-59122-7 を移した後に、植物体を顕微鏡下で観察することにより確認した。なお、Cry1F line 1507 は、宿主への核酸の導入はパーティクルガン法により行ない、アグロバクテリウム法は用いていない。

5

10 ③ 核酸が移入された細胞から、移入された核酸の複製物の存在状態を確認した系統、隔離ほ場試験に供した系統その他の生物多様性影響評価に必要な情報を収集するために用いられた系統までの育成の経過

本スタック系統トウモロコシは、既に承認された MON87427、MON89034、
15 Cry1F line 1507、MON88017 及び Event DAS-59122-7 を交雑育種法により育成したスタック系統である。図 6 (p30) に本スタック系統トウモロコシの育成例を示す。なお、以下に MON87427、MON89034、Cry1F line 1507、MON88017、Event DAS-59122-7 及び本スタック系統トウモロコシのわが国における申請・認可状況を記載した (表 6, p31)。

5

10

【社外秘につき非開示】

15

20 図 6 本スタック系統トウモロコシの育成図

【社外秘につき非開示】

表 6 MON87427、MON89034、Cry1F line 1507、MON88017、Event DAS-59122-7 及び本スタック系統トウモロコシのわが国における申請・認可状況¹⁴

5

平成25年1月現在

	食品 ¹⁾	飼料 ²⁾	環境 ³⁾
MON87427	2012年4月	2012年4月	2011年5月
	申請	申請	第一種使用規程申請
			2012年2月
			パブリック・コメント
			結果の公表
MON89034	2007年11月	2007年10月	2008年1月
	安全性確認	安全性確認	第一種使用規程承認
Cry1F line 1507	2002年7月	2003年3月	2005年3月
	安全性確認	安全性確認	第一種使用規程承認
MON88017	2005年10月	2006年3月	2006年4月
	安全性確認	安全性確認	第一種使用規程承認
Event	2005年10月	2006年3月	2006年4月
DAS-59122-7	安全性確認	安全性確認	第一種使用規程承認
本スタック系統	15	15	2012年11月
トウモロコシ	申請予定	届出予定	第一種使用規程申請

¹⁾ 食品衛生法に基づく。

10

²⁾ 飼料の安全性の確保及び品質の改善に関する法律に基づく。

³⁾ 遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律に基づく。

¹⁴本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する 15社外秘につき非開示

- (4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性
- ① 移入された核酸の複製物が存在する場所

MON87427、MON89034、Cry1F line 1507、MON88017 及び Event DAS-59122-7 の導入遺伝子は核ゲノム中に存在することが確認されている。

② 移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数 世代における伝達の安定性

[MON87427]

5

10

25

30

35

サザンブロット分析による導入遺伝子の解析の結果、MON87427の核ゲノム中の1ヵ所に導入遺伝子が1コピー存在することが親系統の評価で確認された。また、親系統の評価において、導入遺伝子は安定して後代に遺伝していることが複数世代におけるサザンブロット分析によって示された (Arackal et al., 2010)。

20 **[MON89034]**

サザンブロット分析による導入遺伝子の解析の結果、MON89034 の核ゲノム中の 1 ヵ所に導入遺伝子が 1 コピー存在することが親系統の評価で確認された。また、親系統の評価において、導入遺伝子は安定して後代に遺伝していることが複数世代におけるサザンブロット分析によって示された (Rice et al., 2006)。

なお、MON89034 の導入遺伝子の塩基配列を解析した結果、*cry1A.105* 遺伝子の発現を制御する P-*e35S* の 5'末端領域とそれに隣接する右側境界領域が、相同組換えにより T-DNA II 領域内の左側境界領域と *nptII* 遺伝子の発現を制御する P-*35S* の 5'末端領域と置き換わっていることが明らかとなった。しかしながら、この相同組換えは蛋白質をコードする領域中では起こっておらず、最も近いオープンリーディングフレームである Cry1A.105 蛋白質のコード領域についても、Cry1A.105 蛋白質が各組織で正常に発現していることが確認されていることから、この相同組換えにより新たなオープンリーディングフレームは形成されていないと考えられた。

[Cry1F line 1507]

サザンブロット分析による導入遺伝子の解析の結果、Cry1F line 1507 の核 ゲノム中の 1 ヵ所に導入遺伝子が 1 コピー存在することが親系統の評価で確 認されている。また、親系統の評価において、導入遺伝子は安定して後代に 遺伝していることが複数世代におけるサザンブロット分析によって示されて いる (社内報告書 1)。

なお、Cry1F line 1507 へ導入された核酸の塩基配列解析を行った結果、導入された核酸の 5'末端領域に改変 cry1F 遺伝子配列の一部が、5'末端及び 3'末端領域に pat 遺伝子配列の一部が、3'末端領域に ORF25PolyA Terminator 配列の一部が含まれていることが確認されたが、ノーザンブロット解析により mRNA への転写は行なわれておらず、これらの遺伝子断片は機能していないことが確認されている (社内報告書 2)。

15 **[MON88017]**

5

10

20

サザンブロット分析による導入遺伝子の解析の結果、MON88017の核ゲノム中の1ヵ所に導入遺伝子が1コピー存在することが確認された。また、導入遺伝子は安定して後代に遺伝していることが複数世代におけるサザンブロット分析によって示された (Beazley et al., 2002)。

[Event DAS-59122-7]

サザンブロット分析による導入遺伝子の解析の結果、Event DAS-59122-7 の核ゲノム中の1ヵ所に導入遺伝子が1コピー存在することが親系統の評価で確認されている。また、親系統の評価において、導入遺伝子は安定して後代に遺伝していることが複数世代におけるサザンブロット分析によって示されている(社内報告書3)。

30 ③ 染色体上に複数コピーが存在している場合は、それらが隣接しているか離れているかの別

MON87427、MON89034、Cry1F line 1507、MON88017 及び Event DAS-59122-7 は全て 1 コピーなので該当しない。

④ (6)の①において具体的に示される特性について、自然条件の下での個体間及び世代間での発現の安定性

発現の安定性については以下のように親系統の評価で確認した。

5 MON87427: ウエスタンブロット分析による蛋白質の発現確認

(Beyene and Niemeyer, 2009; Tauchman, 2010)

MON89034: ウエスタンブロット分析による蛋白質の発現確認

(Hartmann et al., 2006)

Cry1F line 1507: ELISA 法による蛋白質の発現確認 (社内報告書 4)、及び

チョウ目害虫を用いた生物検定と除草剤グルホシネート

散布試験 (隔離ほ場試験報告書1)

MON88017: 除草剤グリホサート散布試験及び ELISA 法による蛋白質

の発現確認 (日本モンサント株式会社, 2003)

Event DAS-59122-7: ELISA 法による蛋白質の発現確認 (社内報告書 5)、及び コウチュウ目害虫を用いた生物検定 (Bing et al., 2003)

と除草剤グルホシネート散布試験 (隔離ほ場試験報告書

2)

⑤ ウイルスの感染その他の経路を経由して移入された核酸が野生動植物等 20 に伝達されるおそれのある場合は、当該伝達性の有無及び程度

MON87427、MON89034、Cry1F line 1507、MON88017及びEvent DAS-59122-7 に移入された核酸の配列には伝達を可能とする配列を含まないため、ウイルスの感染その他の経路を経由して野生動植物等に伝達されるおそれはない。

25

30

35

10

15

(5) 遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度及び信頼性

導入遺伝子及びその周辺の核ゲノムの DNA 配列をプライマーとして用いる PCR により、MON87427、MON89034 及び MON88017 それぞれを特異的に検出することが可能である (Beazley et al., 2002; Kelly, 2006; Rice et al., 2006)。

Cry1F line 1507 を検出及び識別するための方法として、導入遺伝子及びその周辺の核ゲノムの DNA 配列をプライマーとして用いたリアルタイム定量 PCR 法が開発されている (JRC, 2005b)。

Event DAS-59122-7 を検出及び識別するための方法として、導入遺伝子及び その周辺の核ゲノムの DNA 配列をプライマーとして用いたリアルタイム定量 PCR 法が開発されている (JRC, 2005a)。

- 5 本スタック系統トウモロコシを検出及び識別するためには、上記の方法をトウモロコシの種子一粒ごとに行う必要がある。
 - (6) 宿主又は宿主の属する分類学上の種との相違
- 10 ① 移入された核酸の複製物の発現により付与された生理学的又は生態学的 特性の具体的な内容

本スタック系統トウモロコシには各親系統に由来する以下の特性が付与されている。

15

20

25

30

MON87427: 導入遺伝子に由来する改変 CP4 EPSPS 蛋白質による除

草剤グリホサート誘発性雄性不稔¹⁶及び除草剤グリホサート耐性。除草剤グリホサート誘発性雄性不稔の形質は、8 葉期 (V8) 頃から 13 葉期 (V13) 頃にかけての

栄養生長期に除草剤グリホサートを散布することで発

揮される。これは MON87427 の雄性生殖組織では、改変 cp4 epsps 遺伝子の発現が e35S プロモーターと hsp70 イントロンの組合せによって制御されているため、改

変 CP4 EPSPS 蛋白質は発現しないか、発現しても微量であり、それによる除草剤グリホサート耐性が付与さ

れていないためである。

MON89034: 導入遺伝子に由来する Cry1A.105 蛋白質及び改変

Cry2Ab2 蛋白質によるチョウ目害虫抵抗性

Cry1F line 1507: 導入遺伝子に由来する Cry1F 蛋白質によるチョウ目害

虫抵抗性及びPAT蛋白質による除草剤グルホシネート

耐性

MON88017: 導入遺伝子に由来する改変 CP4 EPSPS 蛋白質による除

草剤グリホサート耐性及び改変 Cry3Bb1 蛋白質による

¹⁶本スタック系統トウモロコシでは MON88017 由来の除草剤グリホサート耐性が全組織中に付与されていることより、MON87427 由来の除草剤グリホサート誘発性雄性不稔の形質は発揮されない。

コウチュウ目害虫抵抗性

Event DAS-59122-7:導入遺伝子に由来する Cry34Ab1 蛋白質及び Cry35Ab1
蛋白質によるコウチュウ目害虫抵抗性及びPAT蛋白質
による除草剤グルホシネート耐性

5

これらの蛋白質の機能的な相互作用の可能性について、害虫抵抗性蛋白質及 び除草剤耐性蛋白質間の各観点から検討した。

害虫抵抗性蛋白質間での機能的な相互作用について

10 第 1-2-(1)-ロ-② (p18~21) に記載したように、Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質及び Cry1F 蛋白質はチョウ目害虫に、改変 Cry3Bb1 蛋白質及び Cry34Ab1 蛋白質/Cry35Ab1 蛋白質はコウチュウ目害虫に対して殺虫活性を示す。また、第 1-2-(1)-ロ-③ (p21~22) に記載したように、これらの Bt 蛋白質が殺虫活性を発揮するメカニズムについては数多くの研究がなされており (OECD, 2007)、これま でのところ Bt 蛋白質が他の機能を有するとの報告はない。よって、これらの Bt 蛋白質が酵素活性を持つとは考えられず、宿主の代謝系を変化させることはないと考えられる。

また、これらの導入した遺伝子により発現する蛋白質は殺虫効果の特異性に 関与する領域に変化が生じているとは考え難く、殺虫効果に対する影響を及ぼ すことはないと考えられる。したがって、本スタック系統トウモロコシにおい て各親系統が有する殺虫効果が相加的に高まることはあり得るが、お互いの作 用に影響を及ぼし合うことによる相乗効果や拮抗作用が生じることは考え難い。

除草剤耐性蛋白質間での機能的な相互作用について

25 第 1-2-(1)-ロ-③ (p21~22) に記載したように、改変 CP4 EPSPS 蛋白質及び PAT 蛋白質は高い基質特異性を有し、宿主の代謝系を変化させることはないと考えられる。また、各蛋白質の基質は異なり、関与する代謝経路も互いに独立している。したがって、これらの蛋白質が相互に作用して予期しない代謝物が生じることは考え難い。

30

20

害虫抵抗性蛋白質と除草剤耐性蛋白質間での機能的な相互作用について

害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれ異なる作用を持ち、独立 して作用していると考えられ、また酵素活性を持たない又は高い基質特異性を 有することから、相互に影響を及ぼす可能性は考え難い。

35

以上のことから、本スタック系統トウモロコシにおいて、それぞれの親系統

由来の発現蛋白質が相互作用を示す可能性は低いと考えられた。

したがって、本スタック系統トウモロコシと宿主の属する分類学上の種であるトウモロコシとの生理学的又は生態学的特性の相違については、親系統である MON87427、MON89034、Cry1F line 1507、MON88017 及び Event-DAS-59122-7 を個別に調査した結果に基づき評価した。

② 以下に掲げる生理学的又は生態学的特性について、遺伝子組換え農作物と 宿主の属する分類学上の種との間の相違の有無及び相違がある場合はそ の程度

5

10

前項で述べたとおり、本スタック系統トウモロコシにおいて、それぞれの親系統由来の発現蛋白質が植物代謝経路に新たな影響を及ぼす可能性は低いと考えられる。したがって、本スタック系統トウモロコシと宿主の属する分類学上の種であるトウモロコシとの生理学的又は生態学的特性の相違は、親系統である MON87427 (日本モンサント株式会社、2011: Fherle and Sammons 2009)

る MON87427 (日本モンサント株式会社, 2011; Eberle and Sammons, 2009)、 MON89034 (日本モンサント株式会社, 2007)、Cry1F line 1507 (隔離ほ場試験報告書 1)、MON88017 (日本モンサント株式会社, 2003) 及び Event DAS-59122-7 (隔離ほ場試験報告書 2) について個別に調査した a~g の結果に基づき評価することができ、親系統と対照の非組換えトウモロコシには相違がないことが確認されている

15 いる。

なお、生理学的又は生態学的特性に関する情報は日本版バイオセーフティク リアリングハウスホームページ¹⁷ から参照できる。

- 20 a 形態及び生育の特性
 - b 生育初期における低温又は高温耐性
 - c 成体の越冬性又は越夏性
 - d 花粉の稔性及びサイズ
 - e 種子の生産量、脱粒性、休眠性及び発芽率
- 25 f 交雑率
 - g 有害物質の産生性

[Crv1F line 1507]

https://ch.biodic.go.jp/bch/OpenDocDownload.do?info_id=138&ref_no=1
[MON88017]

https://ch.biodic.go.jp/bch/OpenDocDownload.do?info_id=727&ref_no=1
[Event DAS-59122-7]

https://ch.biodic.go.jp/bch/OpenDocDownload.do?info_id=726&ref_no=1

¹⁷各親系統の生理学的又は生態学的特性に関する情報は以下の URL から参照できる。 |MON87427|

http://www.bch.biodic.go.jp/download/lmo/public_comment/H23_11_17_MON87427ap3.pdf [MON89034]

https://ch.biodic.go.jp/bch/OpenDocDownload.do?info_id=1002&ref_no=1

- 3 遺伝子組換え生物等の使用等に関する情報
- (1) 使用等の内容

5

食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並び にこれらに付随する行為。

(2) 使用等の方法

10

(3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法

15

(4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置

20

申請書に添付した緊急措置計画書を参照。

(5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境での使用等の結果

25

_

- (6) 国外における使用等に関する情報
- 30 MON87427、MON89034、Cry1F line 1507、MON88017、Event DAS-59122-7 及 び本スタック系統トウモロコシの諸外国における申請・認可状況は以下の表 7 (p40) に示したとおりである。

表 7 MON87427、MON89034、Cry1F line 1507、MON88017、Event DAS-59122-7 及び本スタック系統トウモロコシの諸外国における申請・ 認可状況¹⁸

2013年1月現在

機関	安全性審査 の種類	MON87427	MON89034	Cry1F line 1507	MON88017	Event DAS-59122-7	本スタック系統 トウモロコシ
米国食品医薬品庁 (FDA)	食品·飼料	2012年4月 安全性確認	2007年8月 安全性確認	2001年5月 安全性確認	2005年1月 安全性確認	2004年10月 安全性確認	*
米国農務省 (USDA)	環境	2010年10月申請	2008年7月 安全性確認	2001年6月 安全性確認	2005年12月 安全性確認	2005年10月 安全性確認	*
カナダ保健省 (Health Canada)	食品	2012 年 6 月 安全性確認	2008年5月 安全性確認	2002年10月 安全性確認	2006年2月 安全性確認	2005年11月 安全性確認	*
カナダ食品検査庁 (CFIA)	環境·飼料	2012年6月 安全性確認	2008年6月 安全性確認	2002年10月 安全性確認	2006年2月 安全性確認	2005年11月 安全性確認	19
欧州食品安全機関 (EFSA)	食品·飼料	2012年6月 申請	2009年10月 安全性確認	2006年3月 安全性確認	2009年10月 安全性確認	2007年10月 安全性確認	19
オーストラリア・ニュージーランド 食品基準機関 (FSANZ)	食品	2012 年 7 月 安全性確認	2008年12月 安全性確認	2003年8月 安全性確認	2006年8月 安全性確認	2005年5月 安全性確認	*
台湾食品薬物管理局 (TFDA)	食品	19	2008年7月 安全性確認	2003年11月 安全性確認	2006年3月 安全性確認	2005年12月 安全性確認	19
韓国食品医薬品庁 (KFDA)	食品	19	2009年4月 安全性確認	2002年12月 安全性確認	2006年4月 安全性確認	2005年10月 安全性確認	19
韓国農村振興庁 (RDA)	環境	19	2009年3月 安全性確認	2004年11月 安全性確認	2006年11月 安全性確認	2005年12月 安全性確認	19
中国農業部 (MOA)	環境·食品· 飼料	19	2010年12月 安全性確認	2004年4月 安全性確認	2007年12月 安全性確認	2006年12月 安全性確認	*

^{*}FDA、USDA、Health Canada、FSANZ及びMOAにおいてスタック系統は規制されていないため、申請は行っていない。

また、MON87427、MON89034、Cry1F line 1507、MON88017、Event DAS-59122-7 及び本スタック系統トウモロコシのわが国における申請・認可状況は表 6 (p31) に記載した。

¹⁸本表に記載された情報に係る権利及び内容の責任は日本モンサント株式会社に帰属する ¹⁹社外秘につき非開示

第二 項目ごとの生物多様性影響の評価

本スタック系統トウモロコシは MON87427、MON89034、Cry1F line 1507、MON88017 及び Event DAS-59122-7 から、交雑育種法により作出した。

5

10

15

20

25

本スタック系統トウモロコシにおいて発現する B. thuringiensis に由来する害虫抵抗性蛋白質 (Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質、Cry1F 蛋白質、改変 Cry3Bb1 蛋白質、Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質) は酵素活性を持つとは考えられず、宿主の代謝系を変化させることはないと考えられる。また、これらの蛋白質は殺虫効果の特異性に関与する領域に変化が生じていないと考えられるため、殺虫効果に対する影響を及ぼすこと及び害虫抵抗性蛋白質間で相互作用が生じることは考え難い。

次に、本スタック系統トウモロコシにおいて発現する除草剤耐性蛋白質 (PAT 蛋白質及び改変 CP4 EPSPS 蛋白質) は高い基質特異性を有し、宿主の代謝系を変化させることはないと考えられる。また、各蛋白質の基質は異なり、関与する代謝経路も互いに独立している。

さらに、害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれの有する機能が異なるため、相互に影響を及ぼす可能性は考え難い。

したがって、本スタック系統トウモロコシにおいて、それぞれの親系統由来の 発現蛋白質が植物代謝経路に新たな影響を及ぼす可能性は低いと考えられた。

以上のことから、本スタック系統トウモロコシの生物多様性影響の評価は、MON87427、MON89034、Cry1F line 1507、MON88017 及び Event DAS-59122-7 の諸形質を個別に調査した結果に基づいて実施した。なお、各親系統の生物多様性影響の評価結果については学識経験者によりとりまとめられており、これらの結果を資料 1~資料 5 として添付した。以下の「1 競合における優位性」、「2 有害物質の産生性」、「3 交雑性」の各項目について、資料 1~資料 5 のとおり、各親系統において生物多様性影響が生ずるおそれはないと結論されている。このため、本スタック系統トウモロコシは、競合における優位性、有害物質の産生性及び交雑性に起因する生物多様性影響が生ずるおそれはないと判断された。

- 1 競合における優位性
- (1) 影響を受ける可能性のある野生動植物等の特定
- (2) 影響の具体的内容の評価
- 35 (3) 影響の生じやすさの評価
 - (4) 生物多様性影響が生ずるおそれの有無等の判断

2 有害物質の産生性

- (1) 影響を受ける可能性のある野生動植物等の特定
- 5 (2) 影響の具体的内容の評価
 - (3) 影響の生じやすさの評価
 - (4) 生物多様性影響が生ずるおそれの有無等の判断
 - 3 交雑性

10

- (1) 影響を受ける可能性のある野生動植物等の特定
- (2) 影響の具体的内容の評価
- (3) 影響の生じやすさの評価
- (4) 生物多様性影響が生ずるおそれの有無等の判断

第三 生物多様性影響の総合的評価

15

20

本スタック系統トウモロコシは MON87427、MON89034、Cry1F line 1507、MON88017 及び Event DAS-59122-7 から、交雑育種法により作出した。

5 本スタック系統トウモロコシにおいて発現する害虫抵抗性蛋白質 (Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質、Cry1F 蛋白質、改変 Cry3Bb1 蛋白質、Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質) は酵素活性を持つとは考えられず、宿主の代謝系を変化させることはないと考えられる。また、これらの蛋白質は殺虫効果の特異性に関与する領域に変化が生じていないと考えられるため、殺虫10 効果に対する影響を及ぼすこと及び害虫抵抗性蛋白質間で相互作用が生じることは考え難い。

次に、本スタック系統トウモロコシにおいて発現する除草剤耐性蛋白質 (PAT 蛋白質及び改変 CP4 EPSPS 蛋白質) は高い基質特異性を有し、宿主の代謝系を変化させることはないと考えられる。また、各蛋白質の基質は異なり、関与する代謝経路も互いに独立している。

さらに、害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれの有する機能が 異なるため、相互に影響を及ぼす可能性は考え難い。

したがって、これらの蛋白質が相互作用を示すことはないと考えられ、本スタック系統トウモロコシにおいて親系統に由来する生理学的又は生態学的特性は変化していないと考えられた。このことから、本スタック系統トウモロコシの生物多様性影響は、各親系統の生物多様性影響評価に基づき評価できると判断した。

各親系統において、競合における優位性、有害物質の産生性及び交雑性に起 25 因する生物多様性影響が生ずるおそれはないと評価されていることから、総合 的評価として、本スタック系統トウモロコシ並びに MON87427、MON89034、 Cry1F line 1507、MON88017 及び Event DAS-59122-7 それぞれへの導入遺伝子の 組合せを有するものであって当該トウモロコシから分離した後代系統のものを 第一種使用規程に従って使用した場合に、わが国の生物多様性に影響を生ずる 30 おそれはないと判断された。

引用文献

15

- Arackal, S.M., C.W. Garnaat, K.R. Lawry, Z. Song, R.L. Girault, J.R. Groat, L.F. Ralston, J.D. Masucci and Q. Tian. 2010. Molecular characterization of MON 87427. Monsanto Technical Report MSL0021822. St. Louis, Missouri. (社內報告書)
- Barker, R.F., K.B. Idler, D.V. Thompson and J.D. Kemp. 1983. Nucleotide sequence of the T-DNA region from the *Agrobacterium tumefaciens* octopine Ti plasmid pTi15955.

 Plant Molecular Biology 2: 335-350.
 - Barry, G.F., G.M. Kishore, S.R. Padgette and W.C. Stallings. 1997. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. Patent 5,633,435, U.S. Patent Office, Washington, D.C.
 - Barry, G.F., G.M. Kishore, S.R. Padgette and W.C. Stallings. 2001. Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases. Patent 6,248,876, U.S. Patent Office, Washington, D.C.
- Beazley, K.A., H.M. Anderson, P.B. Wimberley, D.W. Mittanck and R.P. Lirette. 2002. Molecular analysis of YieldGard® Rootworm/Roundup Ready® corn event MON 88017. Monsanto Technical Report MSL 17609. (社内報告書)
- Beck, E., G. Ludwig, E.A. Auerswald, B. Reiss and H. Schaller. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327-336.
 - Bevan, M., W.M. Barnes and M.-D. Chilton. 1983. Structure and transcription of the nopaline synthase gene region of T- DNA. Nucleic Acids Research 11: 369-385.
 - Beyene, A. and K. Niemeyer. 2009. Assessment of CP4 EPSPS protein level in corn tissues collected from MON 87427 produced in U.S. field trials during 2008. Monsanto Technical Report MSL0022370. (社內報告書)
- Bing, J., I. Coats, P. Davis, A. Ernest, R. Herman, L. Higgins, P. Hunst, R. Layton, T. Leopold, P. Olson, N. Poletika, T. Tood, N. Storer, W. Thinglestad, J. Wolt and L. Zeph. 2003. Public interest document for Cry34/35 Ab1 corn rootworm-protected corn. Study

ID: PHI-2003-059. Pioneer Hi-Bred International, Inc., Des Moines, Iowa.

Brown, S.M. and C.G. Santino. 1997. Enhanced expression in plants. Patent 5,593,874, U.S. Patent Office, Washington, D.C.

5

CaJacob, C.A., P.C.C. Feng, G.R. Heck, M.F. Alibhai, R.D. Sammons and S.R. Padgette. 2004. Engineering resistance to herbicides. Pages 353-372 in Hankbook of Plant Biotechnology. P. Christou and H. Klee (eds.). John Wiley & Sons, Ltd., Hoboken, New Jersey.

10

Christensen, A.H., R.A. Sharrock and P.H. Quail. 1992. Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology 18: 675-689.

15

de Maagd, R.A., A. Bravo and N. Crickmore. 2001. How *Bacillus thuringiensis* has evolved specific toxins to colonize the insect world. Trends in Genetics 17: 193-199.

20 sy

Depicker, A., S. Stachel, P. Dhaese, P. Zambryski and H.M. Goodman. 1982. Nopaline synthase: Transcript mapping and DNA sequence. Journal of Molecular and Applied Genetics 1: 561-573.

25

Eberle, M. and B. Sammons. 2009. Assessment of the effect of cold stress on the growth of MON 87427 under growth chamber conditions. Monsanto Technical Report MSL0022023. St. Louis, Missouri. (社內報告書)

30

Eckes, P., B. Uijtewaal and G. Donn. 1989. A synthetic gene confers resistance to the broad spectrum herbicide L-phosphinothricin in plants. Journal of Cellular Biochemistry 13D: 334.

FAOSTAT. 2012. World corn production 2010. Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567 [Accessed September 25, 2012].

35

Fling, M.E., J. Kopf and C. Richards. 1985. Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-O-nucleotidyltransferase.

Nucleic Acids Research 13: 7095-7106.

Fraley, R.T., S.G. Rogers, R.B. Horsch, P.R. Sanders, J.S. Flick, S.P. Adams, M.L. Bittner, L.A. Brand, C.L. Fink, J.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffman and S.C. Woo. 1983. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80: 4803-4807.

Giza, P.E. and R.C.C. Huang. 1989. A self-inducing runaway-replication plasmid expression system utilizing the Rop protein. Gene 78: 73-84.

10

30

- Gruys, K.J., M.C. Walker and J.A. Sikorski. 1992. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from *Escherichia coli*. Biochemistry 31: 5534-5544.
- Hamilton, D.A., M. Roy, J. Rueda, R.K. Sindhu, J. Sanford and J.P. Mascarenhas. 1992. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Molecular Biology 18: 211-218.
- Hartmann, A., K. Neimeyer and A. Silvanovich. 2006. Assessment of the Cry1A.105 20 and Cry2Ab2 protein levels in tissues of insect-protected corn MON 89034 produced in 2005 U.S. field trials. Monsanto Technical Report MSL 20285. (社內報告書)
- Head, G., M. Pleau, S. Sivausupramanian and T. Vaughn. 2001. Insecticidal spectrum of activity for Cry3Bb protein *in vitro*. Monsanto Technical Report C3NTO. St. Louis, Missouri. (社内報告書)
 - Herman, R.A., P.N. Scherer, D.L. Young, C.A. Mihaliak, T. Meade, A.T. Woodsworth, B.A. Stockhoff and K.E. Narva. 2002. Binary insecticidal crystal protein from *Bacillus thuringiensis*, strain PS149B1: Effects of individual protein components and mixtures in laboratory bioassays. Journal of Economic Entomology 95: 635-639.
 - Hofmann, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of *Bacillus thuringiensis* δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts.
- 35 Biochemistry 85: 7844-7848.
 - Hohn, T., K. Richards and Geneviève-Lebeurier. 1982. Cauliflower mosaic virus on its

way to becoming a useful plant vector. Current Topics in Microbiology and Immunology 96: 194-236.

- JRC. 2005a. Event-specific method for the quantitation of maize line DAS-59122-7 using real-time PCR.
 - JRC. 2005b. Event-specific method for the quantitation of maize line TC1507 using real-time PCR.
- 10 Kay, R., A. Chan, M. Daly and J. McPherson. 1987. Duplication of CaMV 35*S* promoter sequences creates a strong enhancer for plant genes. Science 236: 1299-1302.
 - Kelly, R.A. 2006. Corn RHS HAM027 event specific EndPoint TaqMan PCR. Monsanto Technical Report BQ-QC-10456-01. St. Louis, Missouri. (社內報告書)
 - Klee, H.J., Y.M. Muskopf and C.S. Gasser. 1987. Cloning of an *Arabidopsis thaliana* gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: Sequence analysis and manipulation to obtain glyphosate-tolerant plants. Molecular and General Genetics 210: 437-442.

15

- Lamppa, G.K., G. Morelli and N.-H. Chua. 1985. Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Molecular and Cellular Biology 5: 1370-1378.
- MacRae, T.C. 2005. Insecticidal activity of the Cry1A.105 *Bacillus thuringiensis* protein against five lepidopteran pests of corn. Monsanto Technical Report MSL-20056. St Louis, Missouri. (社内報告書)
- MacRae, T.C., C.R. Brown and S.L. Levine. 2005. Evaluation of the potential for interactions between the *Bacillus thuringiensis* proteins Cry1A.105 and Cry2Ab2. Monsanto Technical Report MSL-19859. St Louis, Missouri. (社內報告書)
- MacRae, T.C., C.R. Brown and S.L. Levine. 2006a. Evaluation of potential for interactions between the *Bacillus thuringiensis* proteins Cry1A.105, Cry2Ab2, and Cry3Bb1. Monsanto Technical Report MSL-20270. St. Louis, Missouri. (社內報告書)
 - MacRae, T.C., C.R. Brown and S.L. Levine. 2006b. Spectrum of insecticidal activity of

Bacillus thuringiensis Cry2Ab2 protein. Monsanto Technical Report MSL-20229. St. Louis, Missouri. (社內報告書)

- Maggi, V.L. 2000a. Evaluation of the dietary effect(s) of insect protection protein 2 on adult honey bees (*Apis mellifera* L.). Monsanto Technical Report MSL-16176. St Louis, Missouri. (社内報告書)
- Maggi, V.L. 2000b. Evaluation of the dietary effect(s) of insect protection protein 2 on honey bee larvae. Monsanto Technical Report MSL-16175. St Louis, Missouri. (社內報 10 告書)
 - Masson, L., B.E. Tabashnik, A. Mazza, G. Préfontaine, L. Potvin, R. Brousseau and J.-L. Schwartz. 2002. Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of *Bacillus thuringiensis*. Applied and Environmental Microbiology 68: 194-200.

15

20

- Matsuoka, M., Y. Kano-Murakami, Y. Tanaka, Y. Ozeki and N. Yamamoto. 1987. Nucleotide sequence of cDNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase from maize. Journal of Biochemistry 102: 673-676.
- McElroy, D., A.D. Blowers, B. Jenes and R. Wu. 1991. Construction of expression vectors based on the rice actin 1 (*Act1*) 5' region for use in monocot transformation. Molecular and General Genetics 231: 150-160.
- McElroy, D., W. Zhang, J. Cao and R. Wu. 1990. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell 2: 163-171.
 - McElwain, E.F. and S. Spiker. 1989. A wheat cDNA clone which is homologous to the 17 kd heat-shock protein gene family of soybean. Nucleic Acids Research 17: 1764.
 - McPherson, J.C. and R. Kay. 1994. Method for enhanced expression of a protein. Patent 5,359,142, U.S. Patent Office, Washington, D.C.
- Odell, J.T., F. Nagy and N.-H. Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812.
 - OECD. 1999. Consensus document on general information concerning the genes and

their enzymes that confer tolerance to glyphosate herbicide. ENV/JM/MONO(99)9. Series on Harmonization of Regulatory Oversight in Biotechnology No.10. Organisation of Economic Co-operation and Development, Paris, France.

- OECD. 2003. Consensus document on the biology of *Zea mays* subsp. *mays* (maize). ENV/JM/MONO(2003)11. Series on Harmonisation of Regulatory Oversight in Biotechnology No.27. Organisation of Economic Co-operation and Development, Paris, France.
- OECD. 2007. Consensus document on safety information on transgenic plants expressing *Bacillus thuringiensis*-derived insect control proteins. ENV/JM/MONO(2007)14. Series on Harmonisation of Regulatory Oversight in Biotechnology No. 42. Organisation of Economic Co-operation and Development, Paris, France.

15

25

Padgette, S.R., D.B. Re, G.F. Barry, D.E. Eichholtz, X. Delannay, R.L. Fuchs, G.M. Kishore and R.T. Fraley. 1996a. New weed control opportunities: Development of soybeans with a Roundup ReadyTM gene. Pages 53-84 in Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. S.O. Duke (ed.). CRC Press, Inc., Boca Raton, Florida.

Padgette, S.R., N.B. Taylor, D.L. Nida, M.R. Bailey, J. MacDonald, L.R. Holden and R.L. Fuchs. 1996b. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition 126: 702-716.

Paradise, M.S. 2006a. Evaluation of potential dietary effects of Cry1A.105 protein on the ladybird beetle, *Coleomegilla maculata* (Coleoptera: Coccinellidae). Monsanto Technical Report MSL-20150. St Louis, Missouri. (社內報告書)

- Paradise, M.S. 2006b. Evaluation of potential dietary effects of Cry2Ab2 protein on the ladybird beetle, *Coleomegilla maculata* (Coleoptera: Coccinellidae). Monsanto Technical Report MSL-20151. St Louis, Missouri. (社內報告書)
- Raynor, G.S., E.C. Ogden and J.V. Hayes. 1972. Dispersion and deposition of corn pollen from experimental sources. Agronomy Journal 64: 420-427.
 - Rice, J.F., B.J. Wolff, J.R. Groat, N.K. Scanlon, J.C. Jennings and J.D. Masucci. 2006.

- Amended report for MSL-20072: Molecular analysis of corn MON 89034. Monsanto Technical Report MSL-20311. St. Louis, Missouri. (社内報告書)
- Richards, K.B. 2006a. Evaluation of the dietary effect(s) of a Cry1A.105 protein on adult honeybees (*Apis mellifera* L.). Monsanto Technical Report MSL-20354. St Louis, Missouri. (社内報告書)
- Richards, K.B. 2006b. Evaluation of the dietary effect(s) of a Cry1A.105 protein on honeybee larvae (*Apis mellifera* L.). Monsanto Technical Report MSL-20249. St Louis, 10 Missouri. (社内報告書)
 - Ridley, W.P., R.S. Sidhu, P.D. Pyla, M.A. Nemeth, M.L. Breeze and J.D. Astwood. 2002. Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn (*Zea mays* L.). Journal of Agricultural and Food Chemistry 50: 7235-7243.

- Rogers, S.G. 2000. Promoter for transgenic plants. Patent 6,018,100, U.S. Patent Office, Washington, D.C.
- 20 Slaney, A.C., H.L. Robbins and L. English. 1992. Mode of action of *Bacillus thuringiensis* toxin CryIIIA: An analysis of toxicity in *Leptinotarsa decemlineata* (Say) an *Diabrotica undecimpunctata howardi* Barber. Insect Biochemistry and Molecular Biology 22: 9-18.
- 25 Stalker, D.M., C.M. Thomas and D.R. Helinski. 1981. Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Molecular and General Genetics 181: 8-12.
- Sutcliffe, J.G. 1979. Complete nucleotide sequence of the *Escherichia coli* plasmid pBR322. Pages 77-90 in Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor, New York.
 - Tauchman, S. 2010. Demonstration of the presence of CP4 EPSPS protein in corn leaf and seed samples of MON 87427 across multiple generations by western blot analysis.
- 35 Monsanto Technical Report MSL0022026. St. Louis, Missouri. (社内報告書)
 - Thompson, C.J., N.R. Movva, R. Tizard, R. Crameri, J.E. Davies, M. Lauwereys and J.

Botterman. 1987. Characterization of the herbicide-resistance gene *bar* from *Streptomyces hygroscopicus*. The EMBO Journal 6: 2519-2523.

- U.S. EPA. 2005a. *Bacillus thuringiensis* Cry1F corn. U.S. Environmental Protection
 Agency, Office of Pesticide Programs, Washington, D.C.
- U.S. EPA. 2005b. *Bacillus Thuringiensis* Cry34Ab1 and Cry35Ab1 proteins and the genetic material necessary for their production (plasmid insert PHP 17662) in event DAS-59122-7 corn. U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, D.C.
 - Van Rie, J., S. Jansens, H. Höfte, D. Degheele and H. Van Mellaert. 1990. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of *Bacillus thuringiensis* delta-endotoxins. Applied and Environmental Microbiology 56: 1378-1385.

15

20

- Widner, W.R. and H.R. Whitely. 1989. Two highly related insecticidal crystal proteins of *Bacillus thuringiensis* subsp. *kurstaki* possess different host range specificities. Journal of Bacteriology 171: 965-974.
- Zambryski, P., A. Depicker, K. Kruger and H.M. Goodman. 1982. Tumor induction by *Agrobacterium tumefaciens*: Analysis of the boundaries of T-DNA. Journal of Molecular and Applied Genetics 1: 361-370.
- 25 柿本 陽一 1981 トウモロコシの起源と特性 I 植物としての分類 類縁関係 畑作全書 第7巻 雑穀編 農山漁村文化協会 東京
 - 柿本 陽一・山田 実 2001 トウモロコシの起源と特性 III 植物としての特性 転作全書 第三巻 雑穀 農山漁村文化協会 東京 pp. 34-38
 - 隔離ほ場試験報告書 1 Bt Cry1F 害虫抵抗性及びグルホシネート耐性トウモロコシ 1507 系統の隔離圃場における環境に対する安全性評価
- 隔離ほ場試験報告書 2 コウチュウ目害虫抵抗性及び除草剤グルホシネート耐 35 性トウモロコシ (B.t. Cry34/35Ab1 Event DAS-59122-7、OECD UI NO.: DAS-59122-7) の環境への影響評価

菊池 一徳 1987 トウモロコシの生産と利用 光琳 東京

財務省 2012 財務省貿易統計

http://www.customs.go.jp/toukei/info/index.htm [Accessed Sep 25 2012]

5

社内報告書 1 Cry1F line 1507、移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性の確認

社内報告書 2. MOLECULAR CHARACTERIZATION OF B.T. CRY1F MAIZE 10 LINE 1507

社内報告書 3 Event DAS-59122-7、移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性の確認

15 社内報告書 4 Cry1F 蛋白質及 PAT 蛋白質が後代品種中でも安定して産生されることの確認

社内報告書 5 Cry34Abl 蛋白質及び Cry35Abl 蛋白質、PAT 蛋白質が後代品種中でも安定して産生されることの確認

20

千藤 茂行 2001 トウモロコシの品種生態 IV 採種 転作全書 第三巻 雑穀 農山漁村文化協会 東京

瀧澤 康孝 2001 子実用トウモロコシの栽培 II 栽培の実際 転作全書 第 25 三巻 雑穀 農山漁村文化協会 東京 pp. 110-128

千葉 浩三 1980 図集・作物栽培の基礎知識 栗原浩(編) 農山漁村文化協会 東京

30 戸澤 英男 2005 トウモロコシ - 歴史·文化、特性·栽培、加工·利用- 農山漁村文化協会 東京

中根 猛彦・大林 一夫・野村 鎮・黒沢 良彦 1963 原色昆虫大図鑑 II 甲虫篇 北隆館 東京

35

中村 茂文 2001a 生育のステージと生理, 生態 I 種子と発芽 転作全書 第三巻 雑穀 農山漁村文化協会 東京 pp. 41-43 中村 茂文 2001b 生育のステージと生理, 生態 III 生殖生長期の生理, 生態 転作全書 第三巻 雑穀 農山漁村文化協会 東京 pp. 50-53

5 西牧 清 1987 13. 食用作物 トウモロコシ 農学大事典 第 2 次増訂改版 農学大事典編集委員会 (編) 養賢堂 東京 pp. 536-541

日本モンサント株式会社 2003 除草剤グリホサートの影響を受けないコウチュウ目害虫抵抗性トウモロコシ MON88001 系統、MON88012 系統、MON88017 系統の模擬的環境における環境安全性評価 (社内報告書).

日本モンサント株式会社 2007 チョウ目害虫抵抗性トウモロコシ(cry1A.105, 改変 cry2Ab2, Zea mays subsp. mays (L.) Iltis) (MON89034, OECD UI: MON89034-3) の隔離ほ場における生物多様性影響評価試験結果報告書 (社内報告書).

15

20

25

30

35

日本モンサント株式会社 2011 除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ (改変 cp4 epsps, Zea mays subsp. mays (L.) Iltis) (MON87427, OECD UI: MON-87427-7)の隔離ほ場における生物多様性影響評価試験結果報告書 (社内報告書).

農林水産省 2012a 23 年産飼料作物の収穫量(全国農業地域別・都道府県別) (2) 青刈りとうもろこし

http://www.e-stat.go.jp/SG1/estat/List.do?lid=000001087011 [Accessed Sep 25 2012].

農林水産省 2012b 平成23年産 秋冬野菜、指定野菜に準ずる野菜等の作付け 面積、収穫量及び出荷量

 $\underline{\text{http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_yasai/pdf/yasai_syutou11.pd}} \underline{f} [Accessed Sep 25 2012].$

松井正春・斉藤 修 2003 III 農業環境技術研究所における Bt トウモロコシ緊 急調査 4. Bt 組換えトウモロコシ花粉中の Bt トキシンの検出 2. 生物検定による検出 農業環境研究叢書 第14号 遺伝子組換え作物の生態系への影響評価農業環境技術研究所 つくば pp. 55-62

丸山 寛治 1981 トウモロコシの品種生態 I 品種の基本特性 畑作全書 第7巻 雑穀編 農山漁村文化協会 東京 pp.83-89

緊急措置計画書

平成24年11月26日

5

氏名 日本モンサント株式会社 代表取締役社長 山根 精一郎 住所 東京都中央区銀座四丁目10番10号

第一種使用規程の承認を申請している除草剤グリホサート誘発性雄性不稔、チョウ目及びコウチュウ目害虫抵抗性並びに除草剤グルホシネート及びグリホサート耐性トウモロコシ (cry1A.105, 改変 cry2Ab2, cry1F, pat, 改変 cp4 epsps, 改変 cry3Bb1, cry35Ab1, cry35Ab1, Zea mays subsp. mays (L.) Iltis) (MON87427 × MON89034 × B.t. Cry1F maize line 1507 × MON88017 × B.t. Cry34/35Ab1 Event
 DAS-59122-7, OECD UI: MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-88Ø17-3 × DAS-59122-7) (以下、「本スタック系統トウモロコシ」という。) 並びに MON87427、MON89034、Cry1F maize line 1507、B.t. Cry34/35Ab1 Event DAS-59122-7 及び MON88017 のうち4系統、3系統または2系統からなるスタック系統トウモロコシの第一種使用等において、生物多様性影響が生ずるおそ れがあると、科学的根拠に基づき立証された場合、以下の措置を執ることとする。

1 第一種使用等における緊急措置を講ずるための実施体制及び責任者

平成24年11月現在

社内委員	
*	日本モンサント株式会社 代表取締役社長 東京都中央区銀座四丁目 10 番 10 号 (電話番号 03-6226-6080)
	日本モンサント株式会社 農薬規制・環境部 部長
	日本モンサント株式会社 バイオ規制・環境部 部長
	日本モンサント株式会社 バイオ規制・環境部 油糧作物担当課長
	日本モンサント株式会社 広報部 部長
	日本モンサント株式会社 広報部

5 *: 管理責任者

- 2 第一種使用等の状況の把握の方法
- 10 弊社は、モンサント・カンパニーと連絡をとり、種子、穀物生産、収穫物の 状況に関し、種子製造、種子供給、販売、穀物取扱業者など使用の可能性があ る関係各者から可能な限り情報収集を行う。
- 15 3 第一種使用等をしている者に緊急措置を講ずる必要があること及び緊急措置の内容を周知するための方法

弊社は、モンサント・カンパニーと連絡をとり、生産農家や穀物取扱業者などの取引ルートへ本スタック系統トウモロコシ及び本スタック系統トウモロコシの親系統のうち4系統、3系統または2系統からなるスタック系統トウモロコシの適切な管理、取扱いなどの生物多様性影響のリスクとその危機管理計画について情報提供を行う。

- 4 遺伝子組換え生物等を不活化し又は拡散防止措置を執ってその使用等を継続するための具体的な措置の内容
- 5 生物多様性影響を生ずるおそれがあると認められた場合、弊社は、モンサント・カンパニーの協力のもと、本スタック系統トウモロコシ及び後代分離系統トウモロコシが環境中に放出されないように必要かつ適切な措置をとるとともに、環境中に放出された本スタック系統トウモロコシ及び本スタック系統トウモロコシの親系統のうち4系統、3系統または2系統からなるスタック系統トウモロコシが、環境中で生存しないように不活化する。
 - 5 農林水産大臣及び環境大臣への連絡体制
- 15 弊社は、信憑性のある証拠及びデータにより生物多様性影響が生ずるおそれが示唆された場合、直ちに農林水産省消費・安全局農産安全管理課及び環境省 自然環境局野生生物課に報告する。

資料リスト

5	資料 1	生物多様性影響評価検討会での検討の結果「除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ(改変 <i>cp4 epsps, Zea mays</i> subsp. <i>mays</i> (L.) Iltis) (MON87427, OECD UI: MON-87427-7) 」 (総合検討会における検討日: 2011 年 9 月 9 日)
10	資料 2	生物多様性影響評価検討会での検討の結果「チョウ目害虫抵抗性トウモロコシ (<i>cry1A.105</i> , 改変 <i>cry2Ab2</i> , <i>Zea mays</i> subsp. <i>mays</i> (L.) Iltis) (MON89034, OECD UI: MON89034-3) 」 (総合検討会における検討日: 2007 年 10 月 4 日)
15	資料 3	生物多様性影響評価検討会での検討の結果「チョウ目害虫抵抗
		性及び除草剤グルホシネート耐性トウモロコシ(<i>cry1F</i> , <i>pat</i> , <i>Zea mays</i> subsp. <i>mays</i> (L) Iltis) (<i>B.t.</i> Cry1F maize line 1507, OECD UI: DAS-Ø15Ø7-1) 」
20		(総合検討会における検討日: 2004年10月7日)
25	資料 4	生物多様性影響評価検討会での検討の結果「除草剤グリホサート耐性及びコウチュウ目害虫抵抗性トウモロコシ(改変 <i>cp4 epsps</i> , 改変 <i>cry3Bb1</i> , <i>Zea mays</i> subsp. <i>mays</i> (L.) Iltis.) (MON88017, OECD UI: MON-88Ø17-3)」
23		(総合検討会における検討日: 2004年5月28日)
30	資料 5	生物多様性影響評価検討会での検討の結果「コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ(<i>cry34Ab1</i> , <i>cry35Ab1</i> , <i>pat</i> , <i>Zea mays</i> subsp. <i>mays</i> (L.) Iltis)(<i>B.t.</i> Cry34/35Ab1 Event DAS-59122-7, OECD UI: DAS-59122-7) 」 (総合検討会における検討日: 2004 年 11 月 12 日)

生物多様性影響評価検討会での検討の結果

名称:除草剤グリホサート誘発性雄性不稔及び除草剤グリホサート耐性トウモロコシ (改変 cp4 epsps, Zea mays subsp. mays (L.) Iltis)(MON87427, OECD UI: MON-87427-7)

第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、保管、運搬

及び廃棄並びにこれらに付随する行為

申請者:日本モンサント株式会社

(1) 生物多様性影響評価の結果について

本組換えトウモロコシは、大腸菌由来のプラスミド pBR322 などをもとに構築された プラスミド PV-ZMAP1043 の T-DNA 領域をアグロバクテリウム法により導入し作出さ れている。

本組換えトウモロコシは、アグロバクテリウム CP4 株由来の改変 CP4 EPSPS 蛋白質 (5-エノールピルビルシキミ酸・3-リン酸合成酵素)をコードする改変 cp4 epsps 遺伝子等を含む T-DNA 領域が染色体上に 1 コピー組み込まれ、複数世代にわたり安定して伝達されていることが遺伝子の分離様式やサザンブロット分析により確認されている。また、これら遺伝子が複数世代にわたり安定して発現していることがウエスタンブロット分析により確認されている。

なお、本組換えトウモロコシは、除草剤グリホサートによる雄性不稔を誘発するため、 改変 cp4 epsps 遺伝子の発現が e35Sプロモーターによって制御されている。このため、 本組換えトウモロコシの改変 CP4 EPSPS 蛋白質は、タペート細胞及び小胞子において は発現しないかあるいは発現しても微量であるのに対し、栄養組織及び雌性生殖組織に おいては除草剤グリホサート耐性を付与するのに十分な量を発現している。

(ア) 競合における優位性

宿主の属する分類学上の種であるトウモロコシは、我が国において長期にわたる使用 等の実績があるが、我が国の自然環境下で自生した例は報告されていない。

2010年に我が国の隔離ほ場において、本組換えトウモロコシの競合における優位性に関わる諸形質について調査が行われた結果、収穫期の地上部重の平均値について、本組換えトウモロコシが 0.72 kg、対照の非組換えトウモロコシが 0.78 kg であり、統計学的有意差が認められた。しかし、認められた差はわずかであり、同時期に調査した形態及び生育の特性並びに種子の生産量における他の項目で統計学的有意差や違いが認められなかったことから、認められた差異が競合における優位性を高めるものではないと考えられた。

また、2008年に米国ほ場で実施された栽培試験の花粉の調査項目のうち、花粉の稔性について、本組換えトウモロコシが99.7%、対照の非組換えトウモロコシが98.9%で、統計学的有意差が認められた。しかし、本組換えトウモロコシ及び対照の非組換えトウ

モロコシの花粉の稔性はどちらも高く、本組換えトウモロコシの値は商業栽培品種 4 品種の平均値の範囲よりわずかに高い程度であったことから、花粉稔性において認められた差異が競合における優位性を高めるとは考え難い。

本組換えトウモロコシは、栄養組織及び雌性生殖組織において除草剤グリホサートに耐性を持つ改変 CP4 EPSPS 蛋白質を産生するが、除草剤グリホサートを散布されることが想定しにくい自然条件下において除草剤グリホサート耐性であることが競合における優位性を高めるとは考え難い。

以上より、影響を受ける可能性のある野生動植物等は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(イ) 有害物質の産生性

宿主の属する分類学上の種であるトウモロコシは、我が国において長期にわたる使用 等の実績があるが、有害物質の産生性は報告されていない。

本組換えトウモロコシは、栄養組織及び雌性生殖組織において除草剤グリホサートに耐性を持つ改変 CP4 EPSPS 蛋白質を産生するが、当該蛋白質は既知アレルゲンと構造的に類似性のある配列を有さないことが確認されている。また、改変 CP4 EPSPS 蛋白質は芳香族アミノ酸を生合成するためのシキミ酸経路を触媒する酵素蛋白質であるが、本経路における律速酵素ではなく、EPSPS 活性が増大しても、本経路の最終産物である芳香族アミノ酸の濃度が高まることはないことが確認されている。

我が国の隔離ほ場において、本組換えトウモロコシの有害物質(根から分泌され他の植物及び土壌微生物に影響を与えるもの、植物体が内部に有し枯死した後に他の植物に影響を与えるもの)の産生性の有無を土壌微生物相試験、鋤込み試験及び後作試験により検討した結果、本組換えトウモロコシと対照の非組換えトウモロコシとの試験区の間に統計学的有意差は認められなかった。

以上より、影響を受ける可能性のある野生動植物等は特定されず、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(ウ) 交雑性

我が国において、トウモロコシが野生化した事例はなく、また交雑可能な近縁野生種であるテオシントの自生も報告されていないことから、本組換えトウモロコシの交雑性に起因して生物多様性影響を受ける可能性のある野生動植物等は特定されなかった。

以上より、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者による 結論は妥当であると判断した。

(2) 生物多様性影響評価を踏まえた結論

以上を踏まえ、本組換えトウモロコシを第一種使用規程に従って使用した場合に、我が 国における生物多様性に影響が生ずるおそれはないとした生物多様性影響評価書の結論は 妥当であると判断した。

生物多様性影響評価検討会での検討の結果

- 1 (略)
- 2 (略)
- 3 (略)
- 4 名称:チョウ目害虫抵抗性トウモロコシ

(cry1A.105, 改变 cry2Ab2, Zea mays subsp. mays (L.) Iltis)

(MON89034, OECD UI: MON-89034-3)

第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、 保管、運搬及び廃棄並びにこれらに付随する行為

申請者:日本モンサント(株)

(1) 生物多様性影響評価の結果について

ア 競合における優位性

宿主が属する生物種であるトウモロコシ(*Zea mays* subsp. *mays*(L.) Iltis)は、我が国において長期にわたり栽培等がなされているが、これまで自生化した例は報告されていない。

我が国の隔離ほ場試験において、本組換えトウモロコシの形態及び生育特性(19項目)並びに種子の生産量に関する特性(4項目)が調査されている。形態及び生育特性では雌穂径にのみ、種子の生産量の特性では一穂着粒数にのみ、非組換えトウモロコシとの間で、それぞれ有意差がみられた。しかしながら、これらの項目の平均値は、これまで隔離ほ場試験で対照に用いられた非組換えトウモロコシの最小値・最大値と比

較した場合、従来のトウモロコシにおける変動の範囲内であり、これら の差異のみにより競合における優位性が高まるとは考えにくい。

本組換えトウモロコシには、移入された *cry1A.105* 遺伝子及び改変 *cry2Ab2* 遺伝子によりチョウ目害虫抵抗性が付与されている。しかし、自然環境下において、チョウ目害虫による食害がトウモロコシの生育を 困難にさせる主な要因ではないと考えられるため、これらの性質により 競合における優位性が高まるとは考えにくい。

以上より、影響を受ける可能性のある野生動植物等は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

イ 有害物質の産生性

宿主が属する生物種であるトウモロコシについては、野生動植物に影響を及ぼすような有害物質を産生するとの報告はなされていない。

我が国での隔離ほ場試験において、本組換えトウモロコシの有害物質 (根から分泌され他の植物へ影響を与えるもの、根から分泌され土壌微 生物に影響を与えるもの、植物体が内部に有し枯死した後に他の植物に 影響を与えるもの)の産生性が調査されているが、非組換えトウモロコ シとの間で有意差は認められていない。

本組換えトウモロコシは、チョウ目昆虫に殺虫活性を有する Cry1A.105 蛋白質及び改変 Cry2Ab2 蛋白質を産生する。したがって、 本組換えトウモロコシを栽培した場合、花粉で発現する両蛋白質により、環境省レッドデータブック (2006 年版) に記載されたチョウ目昆

虫に影響を与える可能性が考えられるものの、ほ場周辺の花粉飛散度の調査の結果からその範囲は限定されるため、本組換えトウモロコシから飛散する花粉により個体群レベルで影響を受ける可能性は極めて低いと考えられる。

なお、Cry1A.105 蛋白質及び改変 Cry2Ab2 蛋白質は、アミノ酸配列の相同性検索の結果、既知のアレルゲンと構造的に類似性のある配列を持たないことが確認されている。

以上より、影響を受ける可能性のある野生動植物等は特定されず、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

ウ 交雑性

我が国の自然環境中にはトウモロコシと交雑可能な野生植物は生育 していないことから、影響を受ける可能性のある野生植物は特定され ず、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者 による結論は妥当であると判断した。

(2) 生物多様性影響評価書を踏まえた結論

以上を踏まえ、本組換えトウモロコシを第一種使用規程に従って使用した場合に、生物多様性影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判断した。

5 (略)

1 名称:チョウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ

(cry1F, pat, Zea mays subsp. mays (L.) Iltis) (B.t. Cry1F maize line 1507, OECD UI: DAS-Ø15Ø7-1)

第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、保管、運搬

及び廃棄並びにこれらに付随する行為

申請者:デュポン(株)

(1) 生物多様性影響評価の結果について

競合における優位性

宿主が属する生物種であるトウモロコシ (Zea mays subsp. mays (L.) Iltis.) は、我が国において長期間にわたり栽培されてきたが、自生しているとの報告はされていない。

本組換えトウモロコシには、移入された cryIF 及び pat によりそれぞれチョウ目昆虫への抵抗性及びグルホシネートへの耐性が付与されている。しかし、チョウ目害虫による食害はトウモロコシが我が国の自然環境下で生育することを困難にさせる主な要因ではなく、また、グルホシネートが自然環境下で選択圧になることはないと考えられることから、これらの性質により本組換えトウモロコシが自生化することはないと考えられる。

また、我が国の隔離ほ場における調査の結果、発芽率及び雌穂径において非組換え トウモロコシとのわずかな差が認められたことを除き、競合における優位性に関わる 諸形質に有意差はないことが確認されている。

以上より、影響を受ける可能性のある野生動植物は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

有害物質の産生性

ア 影響を受ける可能性のある野生動植物等の特定

宿主が属する生物種であるトウモロコシについては、野生動植物等に影響を与える有害物質を産生するとの報告はされていない。

本組換えトウモロコシはグルホシネートを不活性化するホスフィノトリシン・アセチル基転移酵素(PAT蛋白質)を産生するが、本蛋白質は基質特異性が極めて高く、植物の生長に悪影響を及ぼさないこと及び動物に対して毒性を持たないことが報告されている。

また、本組換えトウモロコシの有害物質の産生性(根から分泌され他の植物に影響を与えるもの、根から分泌され土壌微生物に影響を与えるもの、植物体が内部に有し他の植物に影響を与えるもの)の調査が行われており、非組換えトウモロコシ

との有意差は認められていない。

しかしながら、本組換えトウモロコシはチョウ目昆虫への殺虫活性を有する Cry1F 蛋白質を産生することから、影響を受ける可能性のある野生動植物等として 我が国に生息するチョウ目昆虫が特定される。

イ 影響の具体的内容の評価

BT 蛋白質に対する感受性が高く、採集・継代飼育が容易であるヤマトシジミ (Zizeeria maha subsp. argia Menetries)の孵化後12時間以内の1齢幼虫に、葉片上に載せた本組換えトウモロコシの花粉を摂食させてその死亡率を調査したところ、100粒/cm²の花粉密度において、3日後から死亡率が上昇し始め、5日後には死亡率50%を越えることが確認されている。

ウ 影響の生じやすさの評価

農業害虫以外のチョウ目昆虫の幼虫への Cry1F 蛋白質の曝露経路としては、ほ場で栽培され又は運搬の途中でこぼれ落ちた本組換えトウモロコシから飛散する花粉を食草と共に摂食する経路が考えられる。

トウモロコシ畑周辺のヒマワリ葉表面におけるトウモロコシの花粉堆積密度を調査した実験によれば、ほ場内で81.7粒/cm²、ほ場から 2m 離れた場所で 33.5 粒/cm² の花粉堆積密度が確認されている。本組換えトウモロコシと非組換えトウモロコシの花粉飛散に関する特性に差異はないことが確認されていることから、本組換えトウモロコシが圃場で栽培された場合は、その周辺に同程度の花粉が堆積すると考えられる。

このため、Cry1F 蛋白質に対してヤマトシジミと同程度の高い感受性を有するチョウ目昆虫の個体については、圃場から 2m 以内に3日以上留まるようなことがあれば影響を受ける可能性があると考えられるが、種又は個体群レベルでこのような条件に当てはまるチョウ目昆虫は存在しないと考えられる。

本組換えトウモロコシの種子が運搬の途中でこぼれ落ち生育した場合は、その個体数は栽培の場合と比較して極めて少なく、周辺に堆積する花粉の密度も極めて少ないと考えられることから、栽培される場合と同じように、影響を受けるチョウ目昆虫は存在しないと考えられる。

なお、本組換えトウモロコシの花粉の飛散量が系統毎に異なることにより、チョウ目昆虫の死亡が懸念される圃場からの距離がある程度増えたとしても、上記の結論に影響を及ぼすことはないと考えられる。

エ 生物多様性影響が生ずるおそれの有無等の判断

以上より、本組換えトウモロコシが産生する Cry1F 蛋白質が我が国に生息するチョウ目昆虫の種又は個体群の維持に支障を及ぼすおそれはないと考えられ、従って、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

交雑性

我が国の自然環境中にはトウモロコシと交雑可能な野生植物は生育していないことから、影響を受ける可能性のある野生植物は特定されず、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(2) 生物多様性影響評価書を踏まえた結論

以上を踏まえ、本組換えトウモロコシを第一種使用規程に従って使用した場合に生物多様性影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判断した。

2 (略)

1 (略)

2 名称:除草剤グリホサート耐性及びコウチュウ目害虫抵抗性トウモロコシ(*cp4 epsps*, *cry3Bb1*, *Zea mays* subsp. *mays* (L.) Iltis)(MON88017, OECD UI:MON-88017-3) 第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為

申請者:日本モンサント(株)

(1) 生物多様性影響評価の結果について

競合における優位性

宿主が属する生物種であるトウモロコシ(Zea mays subsp. mays (L.) Iltis.) については、これまで我が国において第一種使用等がなされているが、我が国において自生化するとの報告はされていない。

本組換えトウモロコシについては、移入された cp4 epsps 及び改変型 cry3Bb1によりそれぞれ除草剤であるグリホサートへの耐性及びコウチュウ目昆虫への抵抗性が付与されているほか、我が国の隔離ほ場における調査の結果、競合における優位性に関わる諸形質のうち、稈長及び雌穂径において非組換えトウモロコシとの有意差が認められている。しかし、グリホサートへの耐性が自然環境下で選択圧になるとは考えにくく、また、稈長及び雌穂径において認められた差異はわずかであることから、これらの差異によって本組換えトウモロコシが非組換えトウモロコシよりも競合において優位になるとは考えにくい。また、コウチュウ目昆虫への抵抗性が付与されることによりコウチュウ目昆虫の食害を受けなくなったとしても、本組換えトウモロコシが他の野生植物を駆逐するようになることはないと考えられる。

これらのことから、影響を受ける可能性のある野生動植物等は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による 結論は妥当であると判断した。

有害物質の産生性

宿主が属する生物種であるトウモロコシについては、野生動植物等に影響を与える有害物質を産生するとの報告はされていない。

本組換えトウモロコシは、グリホサートへの耐性を有する CP4 EPSPS 蛋白質を産生するが、本蛋白質が有害物質であるとする報告はされていない。また、EPSPS 蛋白質は芳香族アミノ酸を合成するシキミ酸経路を触媒する酵素であるが、当該経路の律速要素ではないことが明らかになっており、 cp4 epsps を移入された他の遺伝子組換えトウモロコシでは芳香族アミノ酸含量に変化がないことが確認されていることから、本組換えトウモロコシにおいて芳香族アミノ酸が過剰に産生されることはないと考えられる。更に、EPSPS 蛋白質はホスホエノールピルビン酸及びシキミ酸・3・リン酸と特異的に反応する酵素であることから、CP4 EPSPS 蛋白質が他の物質の反応を触媒して異なる物質が産生されることはないと考えられる。

また、我が国の隔離は場試験において、有害物質の産生性(根から分泌され他の植物に影響を与えるもの、根から分泌され土壌微生物に影響を与えるもの、植物体が内部に有し他の植物に影響を与えるもの)を調査しているが、非組換えトウモロコシとの有意差は認められていない。

本組換えトウモロコシは、BT 蛋白質の1種でありコウチュウ目昆虫への殺虫活性を有する改変型 Cry3Bb1 蛋白質を産生する。改変型 Cry3Bb1 蛋白質は、現在のところ、ハムシ科の2属に分類される Colorado potato beetle (*Leptinotarsa decimlineata*) 及び Corn rootworm (*Diabrotica* spp.) 以外のコウチュウ目昆虫に殺虫活性を示すことは確認されていない。文献調査の結果、これらのコウチュウ目昆虫は我が国に生息していないことが確認されている。しかしながら、未調査のコウチ

ュウ目昆虫に殺虫活性を示すことは否定できないことから、以下の検討を行った。 なお、BT 蛋白質に対して感受性を有することが確認されているのは、1齢及び2 齢幼虫のみである。

ア 影響を受ける可能性のある野生動植物等の特定

コウチュウ目昆虫の1、2齢幼虫への改変型 Cry3Bb1 蛋白質の曝露経路としては、ほ場で栽培され又は運搬の途中でこぼれ落ちた本組換えトウモロコシの植物体及び花粉の摂食が考えられる。トウモロコシの植物体を摂食するコウチュウ目昆虫が農業上の害虫としてリストアップされていること及びコウチュウ目昆虫の生息場所、行動習性、分布域等に鑑みれば、影響を受ける可能性のあるコウチュウ目昆虫としては、オオヨモギハムシ(Chrysolina angsticollis)、ハナウドゾウムシ(Catapionus virdimetallicus)及びヤマトアザミテントウ(Epilachna niponica LEWIS)の1、2齢幼虫などが考えられる。

イ 影響の具体的内容の評価

改変型 Cry3Bb1 蛋白質に最も高い感受性を示すことが知られている Colorado potato beetle の孵化後24時間以内の幼虫に本組換えトウモロコシと非組換えトウモロコシの花粉をそれぞれ摂食させて死亡率を比較した結果、2,000粒/cm²以上の花粉密度において死亡率に差が認められている。

ウ 影響の生じやすさの評価

本組換えトウモロコシがほ場で栽培される場合に当該ほ場の周辺において 2,000 粒/cm² の密度で花粉が落下する距離については、モデル式を用いた計算により最大で 20m と推定されている。このため、影響を受ける可能性があるものとして上記のアで掲げられているコウチュウ目昆虫が改変型 Cry3Bb1 蛋白質に Colorado potato beetle と同程度の感受性を有している場合は、ほ場から 20m 以内の範囲では何らかの影響を受ける場合があると考えられる。しかし、これらのコウチュウ目昆虫はトウモロコシほ場及びその周辺を主要な生息地とはしておらず、仮にこれらのコウチュウ目昆虫がほ場から 20m 以内の範囲に偶発的に移動したとしてもそれらは種又は個体群のごく一部であると考えられる。また、仮に本組換えトウモロコシが運搬の途中でほ場周辺以外の場所でこぼれ落ちて生育したとしても、その個体数はほ場と比較して極めて少ないため、影響を及ぼす程度の花粉を放出することはないと考えられる。

以上の考察は、最も感受性の高いと考えられる検定生物及び通常の気象条件下での最大限の花粉飛散距離を用いて行っていることから、花粉の飛散量等が試験に供試した系統と異なる系統であっても、結論に影響を及ぼすことはないと考えられる。

以上から、本組換えトウモロコシが産生する改変型 Cry3Bb1 蛋白質がこれらのコウチュウ目の種又は個体群の維持に支障を及ぼすおそれはないと考えられる。

これらのことから、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

交雑性

我が国の自然環境中にはトウモロコシと交雑可能な野生種は生育していない。このことから、影響を受ける可能性のある野生動植物等は特定されず、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(2) 生物多様性影響評価書を踏まえた結論

本組換えトウモロコシを第一種使用規程に従って使用した場合に生物多様性影響が

生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判断した。

3 (略)

留意事項

除草剤グリホサート耐性及びコウチュウ目害虫抵抗性トウモロコシ(MON-88017-3)は、BT 蛋白質を産生する遺伝子が移入されているが、遺伝子組換え農作物に由来する BT 蛋白質の土壌中での残存性及び分解速度についての科学的知見が少ないことから、当面の間、関連する科学的知見に関する情報収集が必要であると考える。なお、このことについては、本組換えトウモロコシと同様に BT 蛋白質を産生する遺伝子が移入されている他の遺伝子組換え生物についても同様とする。

1 名称:コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ

(*cry34Ab1*, *cry 35Ab1*, *pat*, *Zea mays* subsp. *mays* (L.) Iltis)(*B.t.* Cry34/35Ab1 Event DAS-59122-7, OECD UI:DAS-59122-7)

第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、保管、運搬 及び廃棄並びにこれらに付随する行為

申請者:デュポン(株)

(1) 生物多様性影響評価の結果について

① 競合における優位性

宿主が属する生物種であるトウモロコシ(Zea mays subsp. mays (L.) Iltis.)は、我が国において長期間にわたり栽培されてきたが、自生しているとの報告はされていない。本組換えトウモロコシには、移入された cry34Ab1 及び cry35Ab1 及び pat によりそれぞれコウチュウ目昆虫への抵抗性及びグルホシネートへの耐性が付与されている。しかし、コウチュウ目害虫による食害はトウモロコシが我が国の自然環境下で生育することを困難にさせる主な要因ではなく、また、グルホシネートが自然環境下で選択圧になることはないと考えられることから、これらの性質により本組換えトウモロコシが自生化することはないと考えられる。

また、我が国の隔離ほ場における調査の結果、供試した非組換えトウモロコシ2品種のうち1品種との間で稈長にわずかな差が認められたことを除き、競合における優位性に関わる諸形質に有意差はないことが確認されている。

以上より、影響を受ける可能性のある野生動植物は特定されず、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

② 有害物質の産生性

ア 影響を受ける可能性のある野生動植物等の特定

宿主が属する生物種であるトウモロコシについては、野生動植物等に影響を与える有害物質を産生するとの報告はされていない。

本組換えトウモロコシはグルホシネートを不活性化するホスフィノトリシン・アセチル基転移酵素 (PAT 蛋白質) を産生するが、本蛋白質は基質特異性が極めて高く、植物の生長に悪影響を及ぼさないこと及び動物に対して毒性を持たないことが報告されている。

また、本組換えトウモロコシの有害物質の産生性(根から分泌され他の植物に影響を与えるもの、根から分泌され土壌微生物に影響を与えるもの、植物体が内部に有し他の植物に影響を与えるもの)の調査が行われており、非組換えトウモロコシ

との間で有意差は認められていない。

しかし、本組換えトウモロコシはコウチュウ目昆虫への殺虫活性を有する Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質を産生することから、影響を受ける可能性の ある野生動植物等として我が国に生息するコウチュウ目昆虫が特定される。

イ 影響の具体的内容の評価

米国におけるトウモロコシ栽培の主要なコウチュウ目害虫であるコーンルートワーム3種(northern corn rootworm($Diabrotica\ barberi$),southern corn rootworm($Diabrotica\ undecimpunctata\ howardi$)及び western corn rootworm($Diabrotica\ virgifera\ virgifera$))等に対する殺虫効果が調べられている。 $Cry34Ab1\ 蛋白質及び\ Cry35Ab1\ 蛋白質を含む人工飼料を摂食させて<math>3$ 日から6日後の死亡率を調査した結果、 $northern\ corn\ rootworm\ で最も感受性の高い値を示し、堆積する花粉蛋白質量が<math>5.56\ \mu\ g/cm^2$ で4日後には死亡率50%を越えることが確認されている。

ウ 影響の生じやすさの評価

農業害虫以外のコウチュウ目昆虫の幼虫へのCry34Ab1蛋白質及びCry35Ab1蛋白質の曝露経路としては、ほ場で栽培され又は運搬の途中でこぼれ落ちた本組換えトウモロコシから飛散する花粉を食草と共に摂食する経路、土壌中に鋤込まれた組換えトウモロコシの腐植質を摂食する経路が考えられる。

トウモロコシ畑周辺のヒマワリ葉表面におけるトウモロコシの花粉堆積密度を調査した実験によれば、ほ場内で81.7粒/cm²、ほ場から1m離れた場所で136.5粒/cm²、ほ場から2m離れた場所で33.5粒/cm²の花粉堆積密度が確認されている。このうち、最大花粉堆積密度を示したほ場から1m離れた場所において、堆積する花粉の予想蛋白質濃度は0.006851 μ g/cm²と換算されている。本組換えトウモロコシと非組換えトウモロコシの花粉飛散に関する特性に差異はないことが確認されていることから、本組換えトウモロコシがほ場で栽培された場合は、その周辺に同程度の花粉が堆積することが考えられる。

しかし、Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質に対して上述の種と同程度の高い感受性を有するコウチュウ目昆虫の個体がほ場から1m以内に4日以上留まることがあったとしても、この程度の花粉蛋白質量では影響を受ける可能性があるとは考えにくく、種又は個体群レベルで影響を受けるコウチュウ目昆虫は存在しないと考えられる。

本組換えトウモロコシの種子が運搬の途中でこぼれ落ち生育した場合は、その個体数は栽培の場合と比較して極めて少なく、周辺に堆積する花粉の密度も極めて少ないと考えられることから、栽培される場合と同じように、影響を受けるコウチュウ目昆虫は存在しないと考えられる。

なお、本組換えトウモロコシの花粉の飛散量が系統毎に異なることにより、コウチュウ目昆虫の死亡が懸念されるほ場からの距離がある程度増えたとしても、上記の結論に影響を及ぼすことはないと考えられる。

また、食性、生息場所、行動特性、分布地域等を鑑みると、コウチュウ目昆虫が 本組換えトウモロコシほ場及びその周辺において土壌中に鋤込まれた組換えトウモ ロコシの腐植質を摂食することにより影響を受ける可能性は低いと考えられる。

エ 生物多様性影響が生ずるおそれの有無等の判断

以上より、本組換えトウモロコシが産生する Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質が我が国に生息するコウチュウ目昆虫の種又は個体群の維持に支障を及ぼすおそれはないと考えられ、従って、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

③ 交雑性

我が国の自然環境中にはトウモロコシと交雑可能な野生植物は生育していないことから、影響を受ける可能性のある野生植物は特定されず、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(2) 生物多様性影響評価書を踏まえた結論

以上を踏まえ、本組換えトウモロコシを第一種使用規程に従って使用した場合に生物多様性影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当である と判断した。

- 2 (略)
- 3 (略)