学識経験者意見

専門の学識経験者により、「遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律」に基づき申請のあった下記の遺伝子組換え生物等に係る第一種使用規程に従って使用した際の生物多様性影響について検討が行われ、別紙のとおり意見がとりまとめられました。

- 1 除草剤グルホシネート耐性トウモロコシ (pat, Zea mays subsp. mays (L.) Iltis) (T14, OECD UI : ACS-ZMØØ2-1)
- 2 除草剤グリホサート耐性及びコウチュウ目及びチョウ目害虫抵抗性トウモロコシ(*cp4 epsps*, *cry3Bb1*, *cry1Ab*, *Zea mays* subsp. *mays* (L.) Iltis)(MON88017×MON810, OECD UI: MON-88Ø17-3×MON-ØØ81Ø-6)
- 3 コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性及び除草剤グリホサート耐性トウモロコシ (*cry34Ab1*, *cry35Ab1*, *pat*, *cp4 epsps*, *Zea mays* subsp. *mays* (L.) Iltis) (59122×NK603, OECD UI: DAS-59122-7×MON-ØØ6Ø3-6)
- 4 コウチュウ目害虫抵抗性及びチョウ目害虫抵抗性及び除草剤グルホシネート耐性及び除草剤 グリホサート耐性トウモロコシ (*cry34Ab1*, *cry35Ab1*, *cry1F*, *pat*, *cp4 epsps*, *Zea mays* subsp.*mays*(L.)Iltis) (59122×1507×NK603,OECD UI:DAS-59122-7×DAS-Ø15Ø7-1×MON-ØØ6Ø3-6)
- 5 除草剤グリホサート耐性及びチョウ目害虫抵抗性ワタ (*cp4 epsps, cry1Ac, cry2Ab, Gossypium hirsutum* L.) (MON-88913×15985,OECD UI: MON-88913-8×MON-15985-7)

$1 \sim 2$ (略)

3 名称:コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性及び除草剤グリホサート耐性 トウモロコシ (*cry34Ab1*, *cry35Ab1*, *pat*, *cp4 epsps*, *Zea mays* subsp. *mays* (L.) Iltis) (59122×NK603, OECD UI: DAS-59122-7×MON-ØØ6Ø3-6)

第一種使用等の内容:食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為

申請者:デュポン(株)

本スタック系統トウモロコシは、従来の交雑育種法により、コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ (DAS-59122-7) と除草剤グリホサート耐性トウモロコシ (MON-00603-6) とを交配して作出されたものであり、これらの親系統については、生物多様性影響評価検討会において、個別に、本スタック系統トウモロコシと同一の第一種使用等をした場合に生物多様性影響が生ずるおそれはないと判断されている。

DAS-59122-7 由来のコウチュウ目害虫抵抗性遺伝子(cry34Ab1 及び cry35Ab1)がコードする Cry34Ab1 蛋白質及び Cry35Ab1 蛋白質(この2つの蛋白質は、バイナリー蛋白質として両者が合わさって殺虫活性を示すため、以後 Cry34Ab1/Cry35Ab1 蛋白質という。)は、酵素活性を持たないことが報告されている。また、DAS-59122-7 由来のグルホシネート耐性遺伝子(pat)がコードする PAT 蛋白質、MON-00603-6 由来のグリホサート耐性遺伝子(cp4 epsps)がコードする CP4 EPSPS 蛋白質は基質特異性が高いことが報告されている。従って、pat、cry34Ab1、cry35Ab1、cp4 epsps が付与する形質については、互いに影響を及ぼす可能性はないと考えられる。

なお、本スタック系統トウモロコシの除草剤グルホシネート及び除草剤グリホサート耐性については、各々除草剤散布試験により、また、コウチュウ目害虫抵抗性については、western corn rootworm (*Diabrotica virgifera virgifera*)を用いた生物検定により、それぞれ発現していることが確認されている。

以上より、本スタック系統トウモロコシについては、親系統が有する形質を併せ持つこと以外 に評価すべき形質の変化はないと考えられる。

(1) 生物多様性影響評価の結果について

① 競合における優位性

本スタック系統トウモロコシは、DAS-59122-7 由来のコウチュウ目害虫抵抗性及び除草剤グルホシネート耐性並びに MON-00603-6 に由来する除草剤グリホサート耐性を併せ持つ。しかし、コウチュウ目害虫による食害は、トウモロコシが我が国の自然環境下で生育することを困難にさせる主な要因ではなく、また、グルホシネート及びグリホサートが自然環境下で選択圧になることはないと考えられることから、これらの性質は共に競合における優位性を高める性質ではなく、従って、本スタック系統トウモロコシが親系統よりも競合において優位になることはないと考えられる。このことから、競合における優位性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断

した。

② 有害物質の産生性

本スタック系統トウモロコシは、DAS-59122-7 由来の Cry34Ab1/Cry35Ab1 蛋白質並びに PAT 蛋白質産生性と、MON-00603-6 由来の CP4 EPSPS 蛋白質産生性を併せ持つ。 Cry34Ab1/Cry35Ab1 蛋白質はコウチュウ目昆虫に対する殺虫作用を有するが、一方、PAT 蛋白質及び CP4 EPSPS 蛋白質は動植物に対する有害物質ではないことが確認されていることから、本スタック系統トウモロコシは、これらの蛋白質を併せ持つとしても、その有害物質の産生性が親系統よりも高まることはないと考えられる。このことから、有害物質の産生性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

③ 交雑性

我が国の自然環境中にはトウモロコシと交雑可能な野生植物は生育していないことから、影響を受ける可能性のある野生植物は特定されず、交雑性に起因する生物多様性影響が生ずるおそれはないとの申請者による結論は妥当であると判断した。

(2) 生物多様性影響評価書を踏まえた結論

以上を踏まえ、本スタック系統トウモロコシを第一種使用規程に従って使用した場合に、 生物多様性影響が生ずるおそれはないとした生物多様性影響評価書の結論は妥当であると判 断した。

 $4 \sim 5$ (略)

生物多様性影響に関し意見を聴いた学識経験者の名簿

(五十音順)

氏 名	現職	専門分野
井出 雄二	国立大学法人東京大学大学院農学生命科学研究科教授	森林遺伝・育種学
かとう もとみ 伊藤 元己	国立大学法人東京大学大学院総合文化研究科助教授	保全生態学
大澤良	国立大学法人筑波大学生命環境科学研究科助教授	植物育種学
おのぎと ひろし 小野里 坦	株式会社松本微生物研究所技術顧問 水産資源開発プロジェクトリーダー	水界生態学・生命工学
近藤 矩朗	帝京科学大学理工学部教授	植物環境生理学
さとう しのぶ 佐藤 忍	国立大学法人筑波大学生命環境科学研究科教授	植物生理学
ust stanf 嶋田 正和	国立大学法人東京大学大学院総合文化研究科教授	保全生態学
たかぎ まさみち 髙木 正道	新潟薬科大学応用生命科学部学部長	微生物遺伝学
武田 和義	国立大学法人岡山大学資源生物科学研究所長	育種学
rantis c.j.ftt 中島 皐介	日本大学生物資源科学部教授	育種学
かにし ともこ 中西 友子	国立大学法人東京大学大学院農学生命科学研究科教授	植物栄養学
林健一	OECDバイオテクノロジー規制的監督調和作業部会 副議長	植物生理学
^{はらだ ひろし} 原田 宏	国立大学法人筑波大学名誉教授	植物発生生理学
O O ctbat 日比 忠明	玉川大学学術研究所特任教授	分子植物病理学
ょご やすひろ 與語 靖洋	独立行政法人農業環境技術研究所化学環境部有機化学 物質研究グループ長	雑草学