コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ (*DvSSJ1*, *ipd072Aa*, *pat*, *Zea mays* subsp. *mays* (L.) Iltis) (DP62151, OECD UI: DP-Ø62151-8) 申請書等の概要

	目	次		
5	第	一種使	月用規程承認申請書	1
	生	物多様	性影響評価書の概要	3
	第	一 生	E物多様性影響の評価に当たり収集した情報	3
	1		又は宿主の属する分類学上の種に関する情報	
		(1)	分類学上の位置付け及び自然環境における分布状況	3
10		(2)	使用等の歴史及び現状	3
		(3)	生理学的及び生態学的特性	5
	2	遺伝	子組換え生物等の調製等に関する情報	8
		(1)	供与核酸に関する情報	8
		(2)	ベクターに関する情報	24
15		(3)	遺伝子組換え生物等の調製方法	25
		(4)	細胞内に移入した核酸の存在状態及び当該核酸による形質発現	の安定性29
		(5)	遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度	及び信頼性
				31
		(6)	宿主又は宿主の属する分類学上の種との相違	32
20	3	遺伝	子組換え生物等の使用等に関する情報	35
		(1)	使用等の内容	35
		(2)	使用等の方法	35
		(3)	承認を受けようとする者による第一種使用等の開始後における	情報収集の
			方法	36
25		(4)	生物多様性影響が生ずるおそれのある場合における生物多様性	影響を防止
			するための措置	36
		(5)	実験室等での使用等又は第一種使用等が予定されている環境と	121121 2112
			での使用等の結果	
		(6)	国外における使用等に関する情報	36
30	第	二項	[目ごとの生物多様性影響の評価	37
	1		における優位性	
	2	有害物	物質の産生性	38
	3	交雑	性	39
	4		他の性質	
35	第.	三	物多様性影響の総合的評価	41
	参	考文献	<u>.</u>	43
	緊	急措置	計画書	51
	隔	離ほ場	,受容環境	53
	添	付資料	.一臂	67

第一種使用規程承認申請書

平成 30 年 8 月 8 日

農林水産大臣 齋藤 健 殿環境大臣 中川 雅治 殿

氏名 デュポン・プロダクション・アグリサイエンス株式会社 申請者 代表取締役社長 田中 能之 住所 東京都千代田区永田町二丁目 11 番 1 号

第一種使用規程について承認を受けたいので、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律第4条第2項の規定により、次のとおり申請します。

遺伝子組換え生物等の	コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモ
種類の名称	ロコシ (DvSSJ1, ipd072Aa, pat, Zea mays subsp. mays (L.)
	Iltis) (DP62151, OECD UI: DP-Ø62151-8)
遺伝子組換え生物等の	隔離ほ場における栽培、保管、運搬及び廃棄並びにこれらに付随
第一種使用等の内容	する行為
遺伝子組換え生物等の	所 在 地:栃木県宇都宮市清原工業団地 19 番地 2 デュポン株
第一種使用等の方法	式会社宇都宮事業所内
, , , , , , , , , , , , , , , , , , , ,	名 称:デュポン・プロダクション・アグリサイエンス株式会
	社 組換え農作物隔離ほ場
	使用期間:承認日から平成34年(2022年)3月31日まで
	1 隔離ほ場の施設
	(1) 部外者の立入りを防止するため、隔離ほ場を取り囲むよう
	にフェンスを設置している。
	(2) 隔離ほ場であること、部外者は立入禁止であること及び管
	理責任者の氏名を明示した標識を見やすい所に掲げてい
	3. (a) (Established (1981)) (A) (Establishe
	(3) 隔離ほ場で使用した機械、器具、靴等に付着した土、本遺
	伝子組換えトウモロコシの種子等を洗浄によって除去す
	るための洗い場を設置しているとともに、当該トウモロコンの原鉄は埋の似って流出なけれた。
	シの隔離は場の外への流出を防止するための設備を排水
	系統に設置している。 (4) 本遺伝子組換えトウモロコシの種苗が、野鳥等の食害によ
	り拡散することを防止するため、播種時及び成熟期から収
	2 隔離は場での作業要領
	(1) 本遺伝子組換えトウモロコシ及び比較対象の非遺伝子組
	換えトウモロコシ以外の植物が、隔離ほ場内で生育するこ
	とを最小限に抑える。
	(2) 本遺伝子組換えトウモロコシを隔離ほ場の外に運搬又は
	保管する場合は、当該トウモロコシが漏出しない構造の容
	器に入れる。
	(3)(2)により運搬又は保管する場合を除き、本遺伝子組換えト
	ウモロコシの栽培終了後は、当該トウモロコシ及び比較対
	象の非遺伝子組換えトウモロコシを隔離ほ場内にすき込
	む等により、確実に不活化する。
	(4) 隔離ほ場で使用した機械、器具、靴等は、作業終了後、隔
	離ほ場内で洗浄すること等により、意図せずに本遺伝子組
	換えトウモロコシが隔離ほ場の外に持ち出されることを
	防止する。
	(5) 本遺伝子組換えトウモロコシの花粉の飛散を防止するた
	め、除雄又は雄穂の袋がけを行う。
	(6) 隔離ほ場が本来有する機能が十分に発揮されるように、設備の維持及び管理な行う。
	備の維持及び管理を行う。 (7) (1)から(c)はでに掲げる東頂な第一種使用等な行う者に適
	(7) (1)から(6)までに掲げる事項を第一種使用等を行う者に遵 守させる。
	すさせる。 (8) 生物多様性影響が生ずるおそれがあると認められるに至
	(6) 生物多様性影響が生りるねてれがめると認められるに生った場合は、別に定める緊急措置計画書に基づき、速やか
	うた場合は、別に足める系芯指直計画音に基づき、歴代が

に対処する。

生物多様性影響評価書の概要

- 第一 生物多様性影響の評価に当たり収集した情報
- 5 1 宿主又は宿主の属する分類学上の種に関する情報
 - (1) 分類学上の位置付け及び自然環境における分布状況
 - ① 和名、英名及び学名

10

和名:トウモロコシ 英名:corn, maize

学名: Zea mays subsp. mays (L.) Iltis

15 ② 宿主の品種名又は系統名

宿主は、イネ科(Gramineae)トウモロコシ属(Zea)に属するトウモロコシ (Z.mays) のデント種で、系統名は PHR03 である。

20 ③ 国内及び国外の自然環境における自生地域

トウモロコシの野生種と見られる植物は現存せず(山田, 2001)、国外の自然環境におけるトウモロコシの自生は報告されていない。

なお、トウモロコシの起源に関与すると考えられる近縁種として、トウモロコシと交雑可能な Zea 属のテオシントと Tripsacum 属のトリプサクムの存在が知られている (OECD, 2003)。テオシントとトリプサクムはメキシコとグアテマラ等に広範囲に自生しており、トリプサクムはさらに米国東部、南部から南米でも認められている(山田, 2001、OECD, 2003)。

我が国の自然環境下において、トウモロコシ及びその近縁種の自生について報告はない。

- (2) 使用等の歴史及び現状
 - ① 国内及び国外における第一種使用等の歴史

35

40

25

30

トウモロコシの原産地がアメリカ大陸であることは間違いないが、その栽培起源地域については諸説あり、米国南西部、メキシコ及び中央アメリカの複数地域説、メキシコと南米の複数地域説、メキシコとグアテマラの複数地域説及びメキシコ南部単独説がある(OECD, 2003)。考古学的検証に基づくと、最初にトウモロコシの利用が始まったのは紀元前7000~5000年頃であり、紀元前3400年頃には栽培が始まったと考えられている(戸澤, 2005)。また、南北アメリカ大陸の各地に伝播して栽培される過程で、デント、ポップ、スイート、フリントのような変異種が生じたと考えられる(山田, 2001、戸澤, 2005)。1492年のコロンブスの

アメリカ大陸到達後、コロンブスによってスペインを通じてヨーロッパに導入され、その後、中東、アフリカ及びアジアの各地域に伝播した。

我が国へは 1573~1591 年頃にポルトガル人によって長崎へ伝えられたフリント種が最初とされ、主に関東以南の山間地で栽培が行われていた。また、明治時代になって北海道へ米国からデント種とフリント種が新たに導入され、全国的に栽培が普及した(戸澤、2005)。

② 主たる栽培地域、栽培方法、流通実態及び用途

・主たる栽培地域

現在、トウモロコシは、北緯 58 度から南緯 40 度に至る範囲で栽培可能であり、米国、中国、ブラジル、アルゼンチン及びヨーロッパ諸国などを中心に、全世界で広く栽培されている(戸澤, 2005、OECD, 2003)。

国連食糧農業機関 (FAO) によると、2016 年における全世界のトウモロコシの 栽培面積は約 1 億 9 千万 ha であり、上位国は、中国 3,895 万 ha、米国 3,511 万 ha、ブラジル 1,496 万 ha、インド 1,020 万 ha、メキシコ 760 万 ha である (FAO, 2017)。

現在、我が国で栽培されているトウモロコシは、統計上、飼料用青刈りデントコーンと生食用スイートコーンがあり、2016年の青刈りデントコーンの作付面積は約9万3,400haで(農林水産省,2017a)、同年のスイートコーンの作付面積は約2万4,000haである(農林水産省,2017b)。

• 栽培方法

海外では、米国をはじめとする主要栽培国において、大型機械を利用した大規模栽培が行われている。

一方、我が国では、飼料用トウモロコシを中心に栽培が行われており、慣行栽培 法は次のとおりである。

北海道から九州に至る慣行播種期は 4 月中~下旬から 5 月中~下旬が最も多い。適正栽植密度は 10a あたり 6,000~8,000 本である。中耕、除草、土寄せは一連の作業で行い、生育初期に 2~3 回行う。収穫期は 9 月下旬から 10 月下旬で、関東や西南暖地ではやや早く、北海道や東北、東山ではやや遅い(瀧澤, 2001)。

なお、国内主要種苗メーカーの品種リストに基づくと、現在、栽培用として市販されているトウモロコシ種子のほとんどは、海外から輸入された一代雑種(F1)品種であり、収穫種子を翌年に栽培用として播種することは一般的でない。

・流通実態及び用途

世界第一のトウモロコシ生産国である米国では、その大部分がアイオワ州、イリノイ州、ネブラスカ州及びミネソタ州を中心としたコーンベルトと呼ばれる地域で栽培されている。2016年における米国でのトウモロコシの利用用途の内訳は、46.0%が飼料(7.6%の蒸留粕を含む)、28.9%がエタノール製造、15.3%が輸出で、残りはコーンシロップ等の食品製造であった(NCGA, 2017)。

我が国では、2017年に約1,531万トンのトウモロコシを輸入している。輸入トウモロコシのうちの約1,012万トンは飼料用であり、残りは食品・工業用及び栽

4

10

5

15

20

25

30

35

培用と考えられる(財務省,2018)。なお、飼料用トウモロコシの大部分は、配合・混合飼料の原料として利用されている(農林水産省,2018)。

また、飼料用トウモロコシは、発芽可能な状態で輸入されるものが多いが、加熱・圧ペんすること等が関税制度の下、義務づけられている(農林水産省,2014)。

5

15

20

25

- (3) 生理学的及び生態学的特性
 - イ 基本的特性

10 -

ロ 生息又は生育可能な環境の条件

トウモロコシは、長い年月の間に栽培植物として馴化された結果、自然条件下 における自生能力を失った作物である(OECD, 2003)。

トウモロコシ種子の発芽の最低温度は $10\sim11$ $^{\circ}$ $^{\circ}$ 最適温度は 33 $^{\circ}$ とされている。実際に播種されるのは $13\sim14$ $^{\circ}$ $^{\circ}$ 以上である(中村, 2001)。

品種や地域によって栽培時期は多少異なるが、主に春に播種されて秋に収穫される一年生の作物である(瀧澤, 2001)。

また、トウモロコシはもともと短日植物であり、その感光性(日長反応性)は晩生種ほど敏感で、早生品種ほど鈍感である(柿本ら, 2001)。

これら温度条件等の他、トウモロコシは吸水により種子重が乾燥重の $1.6\sim2.0$ 倍になったときに幼根(初生根又は種子根)が抽出し、子実発芽となる(戸澤, 2005)。また、トウモロコシの栽培は腐植に富む土壌が適し、 $pH5.0\sim8.0$ の範囲で栽培可能である(戸澤, 2005)。

ハ 捕食性又は寄生性

30

- ニ 繁殖又は増殖の様式
- ① 種子の脱粒性、散布様式、休眠性及び寿命
- 35 完熟した種子は雌穂の苞皮で覆われており、脱粒しない。

トウモロコシは長い間栽培植物として利用してきた過程で、自然条件下における自生能力を失っており、その種子を分散させるためには人間の仲介が必要である(OECD, 2003)。

種子の休眠性は知られていない。種子の寿命は、主に温度と湿度によって左右 40 され、低温乾燥下では長く、高温多湿下では短い(戸澤,2005)。氷点下の気温は 種子の発芽に悪影響を与え、トウモロコシ種子生産に影響を及ぼす主要な要因と なっている。また、45℃以上の気温も種子の発芽に悪影響を及ぼすことが報告さ れている(Wych, 1988)。 さらに、収穫時に雌穂又は種子が地上に落下しても、土壌温度が 10℃に達し、適度な水分条件を伴うまで発芽しないため、その多くが自然状態では腐敗し枯死する(菊池, 1987、中村, 2001)。また、仮に発芽しても生長点が地上に出た後は $6\sim8$ 時間以上 0℃以下の外気にさらされると生存できない(OECD, 2003)。子実の活力を $6\sim8$ 年保存するには、子実水分 12%、温度 10℃、相対湿度 55%以内に保つことが必要である(中村, 2001、OECD, 2003)。

5

10

15

20

25

35

40

② 栄養繁殖の様式並びに自然条件において植物体を再生しうる組織又は器官からの出芽特性

トウモロコシは栄養繁殖せず、種子繁殖する。自然条件において植物体を再生しうる組織又は器官からの出芽特性があるという報告はない。

③ 自殖性、他殖性の程度、自家不和合性の有無、近縁野生種との交雑性及びアポミクシスを生ずる特性を有する場合はその程度

トウモロコシは雌雄同株植物の一年生作物で、主として風媒によって受粉する作物であり $95\sim99$ %は他家受粉によって作られた種子により繁殖するが、自家不和合性は知られておらず、自家受粉も可能である(千藤, 2001、OECD, 2003)。

トウモロコシと交雑可能なのは、同じ Z. mays 種に含まれトウモロコシの近縁 野生種である一年生のテオシント (Z. mays subsp. mexicana) 及び Tripsacum 属である。トウモロコシとテオシントは近接している場合に自由に交雑するが、 Tripsacum 属との交雑は非常に稀である(OECD, 2003)。テオシントはメキシコからグアテマラにかけて分布しており、Tripsacum 属の分布地域は北アメリカ東部、南部から南米となっている(山田, 2001、OECD, 2003)。

なお、我が国におけるトウモロコシと交雑可能なテオシント及び *Tripsacum* 属の野生種の自生について報告はない。また、受精を伴わない繁殖能力を有する種子の生産(アポミクシス)についての報告はない。

30 ④ 花粉の生産量、稔性、形状、媒介方法、飛散距離及び寿命

トウモロコシは雌雄異花序で、雌花は葉腋について $1\sim3$ 本の雌穂を形成し、雄穂は茎の先端につく(柿本ら、2001、OECD、2003)。雄穂は抽出すると $3\sim5$ 日で開花し、開花始めから終わりまでの期間は盛夏で一般に $8\sim9$ 日である(中村、2001)。一方、雌穂の絹糸抽出は雄穂開花のおよそ 1 日後に始まり、抽出始めから抽出揃いまでの期間は $5\sim6$ 日である(中村、2001)。一本の雄穂には $1,200\sim2,000$ 個の小穂があり、一雄穂当たりの花粉の生産量は、約 1,800 万粒とされている(OECD、2003)。

花粉の稔性は花粉の充実度を観察することで推定できる(西尾, 2002)。 花粉の形状は球形で、直径は $90\sim120\mu m$ 程度である(中村, 2001)。

受粉は主に風媒によって行われ、ほとんどの場合は他家受粉である(戸澤, 2005)。他品種、系統の花粉の混入を防ぐための隔離距離は、林、高層建築物などの障害物の有無などにより異なるものの、200~400m とされている(千藤,

2001)

我が国でのトウモロコシほ場周辺におけるヒマワリ($Helianthus\ annuus$)及びイヌホオズキ($Solanum\ nigrum$)葉へのトウモロコシの花粉の堆積密度を調査した研究では、ほ場の縁 (0m) での最大花粉堆積密度はヒマワリの葉で $81.7\ tm^2$ 、イヌホオズキの葉では $71.1\ tm^2$ であった(tm^2 Shirai and tm^2 Ahashi, tm^2 であった(tm^2 ないますがら tm^2 ないますが、 tm^2 ないます

また、北米でも全 7 ヵ所のトウモロコシ畑周辺で、延べ 1,700 本以上のトウワタ (*Asclepias syriaca*) を用いて花粉堆積密度の調査が行われている (Pleasants *et al.*, 2001)。調査の結果、トウモロコシ畑から 1m、2m、4~5m 離れるにつれて、花粉の平均堆積密度は 35.4 粒/cm²、14.2 粒/cm²、そして 8.1 粒/cm²へと減少していくことが明らかとなっている。

さらに、カナダのトウモロコシ畑周辺のトウワタの葉上における花粉堆積密度 を調査しており、ほ場の縁から 1m 及び 5m 離れた地点での平均堆積密度は、それぞれ平均 28 粒/ cm^2 及び 1.4 粒/ cm^2 であったと報告している(Sears *et al.*, 2000)。

花粉の寿命は通常 $10\sim30$ 分であるが、好適条件下ではさらに長い (CFIA, 2012)。 平均的な花粉は大気中に飛散した 2 時間後にはその発芽能力を 100 %失うという報告もある (Luna *et al.*, 2001)。

ホ 病原性

25

5

10

15

20

へ 有害物質の産生性

トウモロコシにおいて、自然条件下で周囲の野生動植物等の生育または生息に影響を及ぼす有害物質の産生は報告されていない。

30

35

トその他の情報

これまで、運搬等においてこぼれ落ちたトウモロコシの、我が国の畑以外での生育については、2013年に熊本県内の港湾周辺で1個体、2015年に鹿児島県内の港湾周辺で1個体の計2個体報告されている(農林水産省,2014、農林水産省,2017c)。

- 2 遺伝子組換え生物等の調製等に関する情報
 - (1) 供与核酸に関する情報
- 5 イ 構成及び構成要素の由来

コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ (DvSSJ1, ipd072Aa, pat, Zea mays subsp. mays (L.) Iltis) (DP62151, OECD UI: DP062151-8) (以下「本組換えトウモロコシ」という。) における供与核酸の構成及 び構成要素の由来を表 1 (9 ページ) 及び表 2 (12 ページ) に示した。また、その供与核酸の塩基配列を添付資料 1 の Appendix1 に示した。

- ロ 構成要素の機能
- 15 ① 目的遺伝子、発現調節領域、局在化シグナル、選抜マーカーその他の供与核酸の構成要素それぞれの機能

供与核酸の構成要素それぞれの機能を表 1 (9 ページ)及び表 2 (12 ページ) に示した (一部の構成要素のサイズについては社外秘情報につき非開示)。後述するように (第一.2. (3) .イ、25 ページ)、本組換えトウモロコシの染色体には、T DNA 領域のうち FRT1 から FRT87 までの領域だけが含まれる。このため、当該領域を挿入 DNA 領域とし、供与核酸のうち挿入 DNA 領域を除く部分を外側骨格領域とした。

表 1 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域の構成並 びにその構成要素の由来及び機能

,	構成要素	サイズ (bp)	由来及び機能
その他	FRT1		出芽酵母(Saccharomyces cerevisiae)由来のFlpリコンビナーゼ標的部位(Proteau et al., 1986)。
pmi 遺伝!	pmi		大腸菌 (<i>Escherichia coli</i>) 由来のマンノースリン酸イソメラーゼ (PMI 蛋白質) をコードする遺伝子 (Negrotto <i>et al.</i> , 2000)。コーディング領域の 5'側に 4 塩基、3'側に 36 塩基の非翻訳領域を含む。
遺伝子発現カセット*	<i>pin</i> II Terminator		ジャガイモ(<i>Solanum tuberosum</i>)由来のプロテアーゼイン ヒビターII遺伝子(<i>pin</i> II)のターミネーター領域(Keil <i>et al.</i> , 1986、An <i>et al.</i> , 1989)。転写を停止する。
その他	Z19 Terminator	トウモロコシ(Zea mays)由来の19-kDaゼイン遺伝子のタ ミネーター領域(GenBank accession KX247647)。転写を 止する。	
	os-actin Promoter os-actin Intron pat		イネ (<i>Oryza sativa</i>) 由来のアクチン遺伝子のプロモーター領域 (GenBank accession CP018159、GenBank accession EU155408.1)。植物体内での構成的発現を誘導する。
pat 遺伝子発現力			イネ (O. sativa) 由来のアクチン遺伝子のイントロン領域 (GenBank accession CP018159、GenBank accession EU155408.1)。
発現カセット			Streptomyces viridochromogenes由来のホスフィノスリシンアセチルトランスフェラーゼ (PAT蛋白質) をコードする遺伝子 (Wohlleben <i>et al.</i> , 1988)。
Γ	CaMV 35S Terminator		カリフラワーモザイクウイルス由来の 35S ターミネーター領域 (Franck <i>et al.</i> , 1980、Guilley <i>et al.</i> , 1982)。転写を停止する。
そ	<i>lox</i> P		バクテリオファージP1由来のCreリコンビナーゼ認識組換え 部位(Dale and Ow, 1990)。
他	sb-ubi Terminator		ソルガム(Sorghum bicolor)由来のユビキチン遺伝子のターミネーター領域(Phytozome gene ID Sobic.004G049900.1)。転写を停止する。

^{*}後述するように、*pmi*遺伝子発現カセットのプロモーターは予め宿主に移入されている。挿入 DNA 領域が当該プロモーターの下流に部位特異的組換えにより挿入され、*pmi*遺伝子と当該プロモーターが接続される(第一.2. (3) .イ、25ページ)。

表 1 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域の構成並 びにその構成要素の由来及び機能(続き)

	構成要素	サイズ (bp)	由来及び機能		
	sb-gkaf Terminator		ソルガム(<i>S. bicolor</i>)由来のガンマカフィリン遺伝子のターミネーター領域(de Freitas <i>et al.</i> , 1994)。転写を停止する。		
他	attB1		バクテリオファージλ由来のインテグラーゼ認識組換え部位 (Invitrogen Gateway [®] クローニングシステム; Hartley <i>et al.</i> , 2000、Katzen, 2007)。		
	<i>ubi</i> ZM1 Promoter		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子のプロモーター領域(Christensen <i>et al.</i> , 1992)。植物体内での構成的発現を誘導する。		
	ubiZM1 5'UTR		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子の5' 非翻訳領域(UTR)(Christensen <i>et al.</i> , 1992)。		
	ubiZM1 Intron		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子のイントロン領域(Christensen <i>et al.</i> , 1992)。		
	All-stop Codon Sequence		6つの読み枠全てにおいて終止コドンを含む配列。		
<i>DvSSJI</i> dsRNA発現カセ	DvSSJ1 遺伝子断片		ウェスタンコーンルートワーム(<i>Diabrotica virgifera virgifera</i>)由来のSmooth Septate Junction 1 遺伝子の部分配列(Hu <i>et al.</i> , 2016)。本発現カセットにおいては、逆位に反復した2つの <i>DvSSJI</i> 遺伝子断片がコネクター配列によって接続され、1分子のmRNAとして転写される。		
A 発 現	Mini-stop Codon Sequence		複数の読み枠において終止コドンを含む配列。		
カセット	zm-Adh1 Intron Connector		トウモロコシ (<i>Z. mays</i>) 由来のアルコール脱水素酵素遺伝子のイントロン 1 領域(Dennis <i>et al.</i> , 1984)の部分配列。2 つの <i>DvSSJ1</i> 遺伝子断片を接続する。		
	Mini-stop Codon Sequence		複数の読み枠において終止コドンを含む配列。		
	DvSSJ1 遺伝子断片		ウェスタンコーンルートワーム (<i>D. virgifera</i>) 由来の <i>DvSSJ1</i> 遺伝子の部分配列(Hu <i>et al.</i> , 2016)。		
	All-stop Codon Sequence		6 つの読み枠全てにおいて終止コドンを含む配列。		
	Z27G Terminator		トウモロコシ(<i>Z. mays</i>)W64 系統由来の 27-kDa ガンマゼ イン遺伝子のターミネーター領域(Das <i>et al.</i> , 1991、Liu <i>et al.</i> , 2016)。転写を停止する。		

表 1 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域の構成並 びにその構成要素の由来及び機能(続き)

	構成要素	サイズ (bp)	由来及び機能
	UBQ14 Terminator		シロイヌナズナ (<i>Arabidopsis thaliana</i>) 由来のユビキチン 14 遺伝子のターミネーター領域 (Callis <i>et al.</i> , 1995)。転写を停 止する。
そ の 他	In2-1 Terminator		トウモロコシ(<i>Z. mays</i>)由来の <i>In2-1</i> 遺伝子のターミネーター領域(Hershey and Stoner, 1991)。転写を停止する。
	attB2		バクテリオファージ λ 由来のインテグラーゼ認識組換え部位 (Invitrogen Gateway $^{\mathbb{R}}$ クローニングシステム; Hartley et $al., 2000、Katzen, 2007)。$
ipd072Aa	BSV (AY) Promoter		Banana streak virus (acuminata Yunnan strain) 由来のプロモーター領域 (Zhuang <i>et al.</i> , 2011)。植物体内での構成的な発現を誘導する。
	zm-HPLV9		トウモロコシ (Z. mays) 由来の推定カルモジュリン 5 遺伝子
遺伝子発現力	Intron ipd072Aa		のイントロン領域(Phytozome gene ID Zm00008a029682)。 Pseudomonas chlororaphis 由来の IPD072Aa 蛋白質をコードする遺伝子(Schellenberger et al., 2016)。
現カセット	at T9 Terminator		シロイヌナズナ(<i>A. thaliana</i>) 由来のマンノース結合蛋白質スーパーファミリーに属する推定蛋白質遺伝子のターミネーター領域(GenBank accession NM_001202984)。転写を停止する。
その	attB3		バクテリオファージ λ 由来のインテグラーゼ認識組換え部位 (Cheo $\it et~al., 2004$)。
他	FRT87		出芽酵母 (<i>S. cerevisiae</i>) 由来の改変型 Flp リコンビナーゼ標的部位(Tao <i>et al.</i> , 2007)。

表 2 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域を除く外 側骨格領域の構成並びにその構成要素の由来及び機能

	構成要素	サイズ (bp)	由来及び機能		
	Ti Plasmid Region	50	アグロバクテリウム(<i>Rhizobium radiobacter</i> (<i>Agrobacterium tumefaciens</i>)) 由来の Ti プラスミド (pTi)の配列(Komari <i>et al.</i> , 1996)。		
	Left Border (LB)	25	アグロバクテリウム(<i>R. radiobacter</i> (<i>A.tumefaciens</i>))由 来の pTi の T-DNA 領域の左側境界領域(Komari <i>et al.</i> , 1996)。		
	spc	789	細菌由来のスペクチノマイシン耐性マーカー遺伝子($Fling\ et\ al., 1985$)。		
	colE1 ori	370	大腸菌(<i>E.coli</i>)由来の DNA 複製起点(Tomizawa <i>et al.</i> , 1977)。		
	cos	14	バクテリオファージλ由来の付着末端(Komari <i>et al.</i> , 1996)。		
	tetR	651	細菌由来のテトラサイクリン耐性遺伝子の調節遺伝子(Komari <i>et al.</i> , 1996)。		
	tetA	1,200	細菌由来のテトラサイクリン耐性遺伝子(Komari <i>et al.</i> , 1996)。		
	trfA	1,149	細菌由来のトランス作用複製因子の遺伝子(Komari <i>et al.</i> , 1996)。		
	oriΤ	367	細菌由来の DNA 伝達起点(Komari <i>et al.</i> , 1996)。		
その他	ctI 6,271		細菌由来のセントラルコントロールオペロン領域(Komari <i>et al.</i> , 1996)。		
	oriV	711	細菌由来の DNA 複製起点(Komari <i>et al.</i> , 1996)。		
	virD1	444			
	virC1	695	アグロバクテリウム(<i>R. radiobacter(A. tumefaciens</i>))由来の		
	virC2	609	T-DNA の植物ゲノムへの挿入に必要な遺伝子(Komari <i>et al.</i> , 1996)。		
	virG	804	1330) 。		
	virB	9,436			
	colE1 ori	370	大腸菌(<i>E.coli</i>)由来の DNA 複製起点(Tomizawa <i>et al.</i> , 1977)。		
	cos	14	バクテリオファージλ由来の付着末端(Komari <i>et al.</i> , 1996)。		
	Right Border (RB)	25	アグロバクテリウム(<i>R. radiobacter</i> (<i>A. tumefaciens</i>))由来 の pTi の T·DNA の右側境界領域(Komari <i>et al.</i> , 1996)。		
	Ti Plasmid Region	50	アグロバクテリウム(<i>R. radiobacter(A. tumefaciens</i>))由来 の pTi の配列(Komari <i>et al.</i> , 1996)。		

表 2 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域を除く外側骨格領域の構成並びにその構成要素の由来及び機能(続き)

	構成要素	サイズ (bp)	由来及び機能
zm-wus2	nos Promoter		アグロバクテリウム(<i>R. radiobacter(A. tumefaciens</i>)) 由来のpTiのノパリン合成酵素遺伝子のプロモーター領域 (Depicker <i>et al.</i> , 1982)。転写を開始する。
zm-wus2 遺伝子発現カセ	zm·wus2		トウモロコシ(Z. mays)由来のWUS2蛋白質をコードする 遺伝子(Mayer et al., 1998、Lowe et al., 2016)。
光力セット	<i>pin</i> II Terminator		ジャガイモ($S.\ tuberosum$)由来のプロテアーゼインヒビター II 遺伝子のターミネーター領域($Keil\ et\ al.,\ 1986$ 、 $An\ et\ al.,\ 1989$)。転写を停止する。
	<i>ubi</i> ZM1 Promoter		トウモロコシ($Z.$ $mays$)由来のポリユビキチン遺伝子のプロモーター領域($Christensen\ et\ al.,\ 1992$)。植物体内での構成的発現を誘導する。
zm-odp2	ubiZM1 5' UTR		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子の 5 ' 非翻訳領域(UTR)(Christensen <i>et al.</i> , 1992)。
zm-odp2 遺伝子発現カセッ	<i>ubi</i> ZM1 Intron		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子のイントロン領域(Christensen <i>et al.</i> , 1992)。
カセット	zm-odp2		トウモロコシ(<i>Z. mays</i>)由来のODP2 蛋白質をコードする遺伝子(GenBank accession XM008676474)。
	<i>pin</i> II Terminator		ジャガイモ($S.\ tuberosum$)由来のプロテアーゼインヒビター II 遺伝子のターミネーター領域($Keil\ et\ al.,\ 1986$ 、 $An\ et\ al.,\ 1989$)。転写を停止する。
その他	Z19 Terminator		トウモロコシ(<i>Z. mays</i>)由来の19-kDaゼイン遺伝子のターミネーター領域(GenBank accession KX247647)。 転写を停止する。

表 2 本組換えトウモロコシの作出に用いた供与核酸のうち挿入 DNA 領域を除く外側骨格領域の構成並びにその構成要素の由来及び機能(続き)

	構成要素 サイ		由来及び機能
	ubiZM1 Promoter		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子のプロモーター領域(Christensen <i>et al.</i> , 1992)。植物体内での構成的発現を誘導する。
	ubiZM1 5' UTR		トウモロコシ(Z . $mays$)由来のポリユビキチン遺伝子の 5 '非翻訳領域(Christensen $et~al.$, 1992)。
Flp遺に	ubiZM1 Intron		トウモロコシ(<i>Z. mays</i>)由来のポリユビキチン遺伝子のイントロン領域(Christensen <i>et al.</i> , 1992)。
FIp遺伝子発現カセ	Flp Exon1		出芽酵母 (<i>S. cerevisiae</i>) 由来のリコンビナーゼであるFLP 蛋白質をコードする遺伝子のエクソン1領域 (Dymecki, 1996)。
セット	st LS1 Intron		ジャガイモ($S.\ tuberosum$)由来の LSI 遺伝子のイントロン領域($Eckes\ et\ al.,\ 1986$)。
	Flp Exon2		出芽酵母 (<i>S. cerevisiae</i>) 由来のリコンビナーゼであるFLP 蛋白質をコードする遺伝子のエクソン2領域 (Dymecki, 1996)。
	<i>pinII</i> Terminator		ジャガイモ (S . $tuberosum$) 由来のプロテアーゼインヒビター II 遺伝子のターミネーター領域($Keil\ et\ al.,\ 1986$ 、 $An\ et\ al.,\ 1989$)。転写を停止する。
DsRed2	CaMV 35S Enhancer		カリフラワーモザイクウイルス由来の35Sエンハンサー領域(Franck <i>et al.</i> , 1980、Kay <i>et al.</i> , 1987)。
<i>d2</i> 遺伝子	Ltp2 Promoter		オオムギ(Hordeum vulgare)由来の糊粉層特異的脂質転 移酵素遺伝子のプロモーター領域(Kalla et al., 1994)。糊 粉層における発現を誘導する。
発現カセ	DsRed2		サンゴ(<i>Discosoma sp</i>)由来の赤色蛍光蛋白質をコードす る遺伝子(Wasson-Blader, 2001)。
ット	CaMV 35S Terminator		カリフラワーモザイクウイルス由来の35Sターミネーター 領域(Franck <i>et al.</i> , 1980、Guilley <i>et al.</i> , 1982)。転写を 停止する。
その他	attB4		バクテリオファージ λ 由来のインテグラーゼ認識組換え部位(Cheo $et~al.$, 2004)。
	CaMV 35S Terminator		カリフラワーモザイクウイルス由来の35Sターミネーター 領域(Franck <i>et al.</i> , 1980、Guilley <i>et al.</i> , 1982)。転写を 停止する。

- ② 目的遺伝子及び選抜マーカーの発現により産生される蛋白質の機能及び当該 蛋白質がアレルギー性を有することが明らかとなっている蛋白質と相同性を 有する場合はその旨
- 5 a. 目的遺伝子及び選抜マーカーの発現により産生される RNA または蛋白質の 機能

DvSSJ1dsRNA

10

15

20

25

30

35

40

DvSSJ1 遺伝子断片はウェスタンコーンルートワーム($Diabrotica\ virgifera\ virgifera$ 、以下、「WCR」という。)に由来する DvSSJ1 遺伝子の部分断片であり、210 塩基からなる($Hu\ et\ al.$, 2016)。本組換えトウモロコシにおいては、相補的な 2 つの DvSSJ1 遺伝子断片を有する RNA が転写され、分子内二重鎖を形成することにより DvSSJ1dsRNA が産生される。当該 dsRNA は、本組換えトウモロコシを摂食した WCR の中腸において RNAi (RNA 干渉)を誘導し、内在の DvSSJ1 蛋白質の産生を抑制することにより殺虫活性を示す。

- RNAi の作用メカニズム

RNAi は、動植物が元来備えている、遺伝子発現及び生体防御を調節する機構である。dsRNA が細胞中に産生される又は取り込まれると、RNase III 型ヌクレアーゼであるDicer 蛋白質が細胞質のdsRNAを21 bp~24 bpのsiRNA(small interfering RNA)に分解する。生じたsiRNAはRISC(RNA-induced silencing complex)と結合し、相補的な塩基配列を含む標的mRNAを塩基対形成によって特異的に認識する。認識された標的mRNAはRISC中のArgonaute蛋白質によって分解され、結果として標的mRNAからの蛋白質の産生が抑制される(Baum and Roberts, 2014、Hu et al., 2016)。

- RNAi による WCR の防除

昆虫においては、内在性遺伝子配列の dsRNA の経口投与が RNAi を誘導することが知られており、線虫(*Caenorhabditis elegans*)において確認されて以来(Timmons and Fire, 1998)、種々の昆虫で確認されている。WCR を含むコウチュウ目昆虫は経口投与された dsRNA に特に感受性が高く、WCR の特定の遺伝子を標的とした dsRNA を植物中に産生させることにより、当該植物を摂食した WCR 中に RNAi を誘導し、防除することが可能であることが報告されている(Baum and Roberts, 2014、Hu *et al.*, 2016)。

- DvSSJ1 遺伝子の同定及び DvSSJ1 蛋白質の機能

RNAi を介した WCR 防除の新たな標的遺伝子を得るため、WCR 由来の cDNA ライブラリーを基に作成した dsRNA を WCR に経口投与し、殺虫活性 を指標にスクリーニングした結果、DvSSJ1 遺伝子が選抜された(Hu $et\ al.$,2016)。

DvSSJ1 遺伝子がコードする DvSSJ1 蛋白質は 160 アミノ酸からなる膜貫 通型蛋白質であり、アミノ酸配列の相同性からショウジョウバエ(Drosophila

melanogaster) における SSK (SNAKESKIN) 蛋白質のオルソログ $^{1)}$ と考えられた(アミノ酸配列で 54.9%の一致、Hu et~al., 2016)。

SSK 蛋白質は、ショウジョウバエの SSJ(Smooth Septate Junction)の形成に必須の蛋白質である。SSJ は節足動物の中腸上皮において、上皮細胞の形態及び細胞間隙における水溶性物質の受動拡散を調節する細胞結合であり(図 1、16 ページ)、Ssk 遺伝子の欠損したショウジョウバエは、SSJ が正常に形成されないため胚性致死となる(Yanagihashi $et\ al.$, 2012)。DvSSJ1 蛋白質も WCR の中腸上皮において発現していることから、WCR における SSJ 形成に関与していると考えられた(Hu $et\ al.$, 2016)。

なお、Ssk遺伝子のオルソログは他の節足動物にも認められるが、脊椎動物や植物には認められない($Hu\ et\ al., 2016$)。

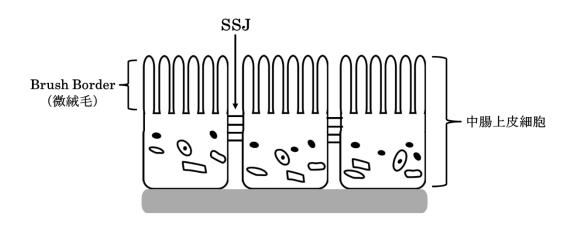


図 1 WCR の中腸上皮細胞における SSJ

SSJ は中腸上皮細胞同士を接着することにより、個々の細胞の形態を調節する。また、細胞間隙を塞ぐ隔壁となり、水溶性物質の受動拡散を調節する。

- 本組換えトウモロコシ中の DvSSJ1dsRNA による WCR の防除

WCR に摂食された本組換えトウモロコシの細胞組織は中腸において消化され、放出された DvSSJIdsRNA が中腸上皮細胞に取り込まれると考えられる。取り込まれた DvSSJIdsRNA は RNAi を介して中腸上皮細胞に内在のDvSSJImRNA を特異的に分解し、DvSSJI 蛋白質の産生を抑制する。その結果、WCR の中腸における SSJ 形成が阻害されると考えられる (Hu et al., 2016)。上述のように、SSJ は中腸上皮細胞の形態及び細胞間隙における水溶性物質の受動拡散を調節していることから、DvSSJIdsRNA は本組換えトウモロコシを摂食した WCR の中腸において SSJ 形成を阻害し、これらの調節機能を損なうことにより、殺虫活性を示すと考えられた (図 2、17 ページ; Hu et al, 2016)。

5

10

15

20

¹⁾ 共通の先祖遺伝子に由来し、異なる種において同じ機能を示す蛋白質又は遺伝子。

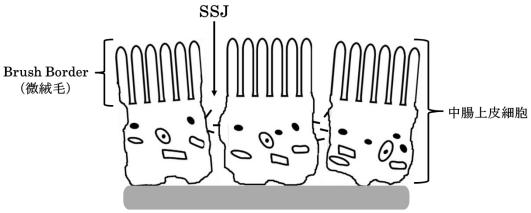


図 2 *DvSSJ1*dsRNA を摂取した WCR の中腸上皮細胞 *DvSSJ1*dsRNA により、SSJ の形成が阻害され、中腸の機能が損なわれると考えられる。

- DvSSJ1dsRNA の殺虫スペクトル

5

10

15

20

25

標的害虫である WCR に対する殺虫活性を確認するため、210 bp の dsRNA を *in vitro* で合成し、WCR に混餌投与した。その結果、WCR に対する殺虫活性が認められ、 LC_{50} は 0.036 ppm であった(表 3、18 ページ;添付資料 1 の Appendix 9)。同様に、WCR を除くコウチュウ目昆虫 9 種及びチョウ目昆虫 4 種に本 dsRNA を混餌投与し、殺虫スペクトルを確認した。その結果、WCR と同じくコウチュウ目ハムシ科に属する近縁種 *Diabrotica undecimpunctata* (サザンコーンルートワーム;ジュウイチホシウリハムシ)に対して殺虫活性が認められたが、その他の昆虫については試験に用いた本 dsRNA の最大濃度である 1 ppm においても生存率に影響は認められなかった(表 3、18 ページ;添付資料 1 の Appendix 9)。

なお、RNAi においては 21 bp~24 bp の siRNA が標的遺伝子の mRNA 上の相補的な塩基配列を特異的に認識して分解することから(Baum and Roberts, 2014)、各昆虫由来の Ssk 遺伝子オルソログについて、DvSSJ1 遺伝子断片との塩基配列の一致を確認した。その結果、上記混餌投与試験において影響が認められたサザンコーンルートワームの Ssk 遺伝子オルソログにおいては、DvSSJ1 遺伝子断片との間に連続する 21 塩基の一致が 79 箇所認められたが、影響が認められなかった昆虫については連続する 21 塩基の一致は認められなかった(表 3、18 ページ)。

これらのことから、DvSSJ1dsRNA は、調査した 14 種の昆虫のうち WCR 及びその近縁種であるサザンコーンルートワームだけに RNAi を誘導し、殺虫活性を示した。

コウチュウ目又はチョウ目以外の目に属する昆虫に対する影響についても 一般申請までに調査する予定である。

表 3 DvSSJ1dsRNAの殺虫スペクトル

目	科	種	LC ₅₀ 1) (ppm)	NOEC 2) (ppm)	21 塩基の一致 3)
	Chrysomelidae	Diabrotica virgifera virgifera (WCR)	0.036 (0.0066 - 0.065)	_	190
	(ハムシ科)	Diabrotica undecimpunctata	_	0.01	79
		Leptinotarsa decemlineata	1	>1	0 (12)
	Tenebrionidae	Tribolium castaneum	1	>1	0 (11)
Colooptoro	Tenebrionidae (ゴミムシダマシ科)	Zophobas morio	_	>1	0 (10)
Coleoptera (コウチュウ目)		Tenebrio molitor	1	>1	$NA^{4)}$
(49)496)	Coccinellidae (テントウムシ科) Staphylinidae (ハネカクシ科)	Epilachna varivestis		>1	0 (12)
		Cryptolaemus montrouzieri 5)		NA ⁴⁾	0 (8)
		Coleomegilla maculata 5)		>1	0 (13)
		Hippodamia convergens 5)	1	>1	$NA^{4)}$
		Dalotia coriaria ⁵⁾ (Atheta coriaria)	_	>1	0 (8)
	Nymphalidae (タテハチョウ科)	Vanessa cardui	_	>1	0 (8)
Lepidoptera		Ostrinia nubilalis	_	>1	0 (9)
(チョウ目)		Cydia pomonella	-	>1	0 (8)
		Helicoverpa zea	_	>1	0 (8)

- 1) 半数致死濃度。括弧内は95%信頼区間。
- 2) 無影響濃度:生存率に影響を生じなかった最大濃度。試験に用いた濃度上限である1ppmで影響が認められなかった場合は>1ppmとした。
- 3) 210 bp の *DvSSJ1* 遺伝子断片と各昆虫由来の *Ssk* 遺伝子オルソログとの間で連続する 21 塩基が一致する箇所数。21 塩基の一致が認められない場合は、一致した塩基配列の長さの最大値を括弧で示した。
- 4) 2018年3月時点では未調査。今後調査予定。
- 5) 非標的昆虫。これら以外の11種は米国における農業害虫。

IPD072Aa 蛋白質

5

10

15

20

25

30

IPD072Aa 蛋白質(GenBank accession number KT795291)は、86 アミノ酸からなる選択的殺虫蛋白質であり、土壌中に普遍的に存在するグラム陰性桿菌である *Pseudomonas chlororaphis* に由来する (Schellenberger *et al*, 2016)。 *P. chlororaphis* は米国及び欧州で生物農薬として安全に使用されており、植物、家畜及びヒトへの病原性は認められていない(Anderson *et al.*, 2018)。

- IPD072Aa 蛋白質の同定及び機能

WCR に殺虫効果を示す新たな蛋白質を同定するため、土壌細菌の蛋白質抽出液をWCR に混餌投与し、殺虫活性を指標にスクリーニングした結果、活性画分中の主要な蛋白質として IPD072Aa 蛋白質が精製された (Schellenberger et al., 2016)。

本蛋白質を摂食した WCR においては、本蛋白質が中腸上皮細胞の内腔側に局在し(図 3、20ページ)、その後中腸上皮細胞が破壊されることが確認された。このことから、本蛋白質は Bt 蛋白質と同様、WCR の中腸上皮細胞に存在する受容体に結合し、中腸上皮細胞を破壊することにより殺虫活性を示すと考えられた。実際に、中腸上皮刷子縁膜小胞(brush border membrane vesicles;BBMV)を用いた結合試験の結果、本蛋白質が WCR の BBMV に結合することが確認された(添付資料 1 の Appendix 10)。一方、後述するように本蛋白質が殺虫活性を示さないチョウ目昆虫である Ostrinia nubilalis(ヨーロッパアワノメイガ)の BBMV への結合は認められなかったことから(添付資料 1 の Appendix 10)、本蛋白質は WCR の中腸上皮細胞に存在する受容体に特異的に結合して作用すると考えられた。

なお、本蛋白質を産生する組換えトウモロコシは、WCR に殺虫活性を示す Cry34Ab1/Cry35Ab1 蛋白質及び Cry3Bb1 蛋白質に対する抵抗性を発達させた WCR に対しても殺虫活性を示した(Schellenberger et~al., 2016)。また、本蛋白質は WCR の BBMV への結合試験において、これら Bt 蛋白質と競合しないことが示された(添付資料 1 の Appendix 10)。これらのことから、これら Bt 蛋白質と本蛋白質は WCR の中腸において異なる受容体に結合すると考えられた。

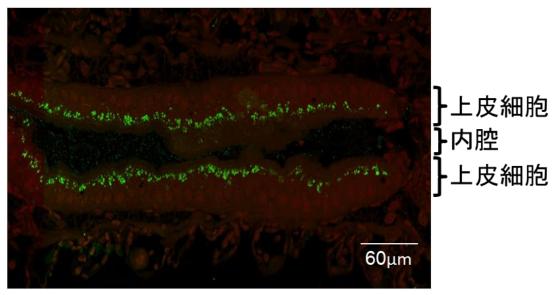


図 3 WCR の中腸における IPD072Aa 蛋白質の局在

WCR に IPD072Aa 蛋白質を混餌投与し、12 時間後にその長軸方向の超薄切片を作成し、IPD072Aa 蛋白質を特異的抗体で検出した(緑色蛍光)。IPD072Aa 蛋白質は中腸上皮細胞の内腔側に局在している。

- IPD072Aa 蛋白質の殺虫スペクトル

5

10

15

20

標的害虫である WCR に対する殺虫活性を確認するため、本蛋白質を *in vitro* で合成し WCR に混餌投与した。その結果、WCR に対する殺虫活性が認められ、 LC_{50} は 15.9 ppm であった(表 4、21 ページ;添付資料 1 の Appendix 9)。同様に、WCR を除くコウチュウ目昆虫 10 種及びチョウ目昆虫 4 種に本蛋白質を混餌投与し、殺虫スペクトルを確認した。その結果、他のコウチュウ目昆虫に対する本蛋白質の NOEC はいずれも 100 ppm を超えていた。また、チョウ目昆虫については、試験に用いた本蛋白質の最大濃度である 1000 ppm においても生存率への影響は認められなかった(表 4、21 ページ;添付資料 1 の Appendix 9)。

これらのことから、IPD072Aa 蛋白質は、調査した 15 種の昆虫のうち WCR に特異的に殺虫活性を示した。

コウチュウ目又はチョウ目以外の目に属する昆虫に対する影響についても 一般申請までに調査する予定である。

表 4 IPD072Aa 蛋白質の殺虫スペクトル

目	科	種	$ ext{LC}_{50}$ $^{1)}$ $^{(}$ $^{(}$ ppm $)$	NOEC 2) (ppm)
	Chrysomelidae	Diabrotica virgifera virgifera (WCR)	15.9 (12.6 - 20.6)	_
	(ハムシ科)	Diabrotica undecimpunctata	_	500
		Leptinotarsa decemlineata	_	>1,000
	Tenebrionidae	Tribolium castaneum	-	>1,000
Colomtono	Tenebriomaae (ゴミムシダマシ科)	Zophobas morio	_	>1,000
Coleoptera (コウチュウ目)	(コミムングマン付)	Tenebrio molitor	_	100
	Coccinellidae (テントウムシ科)	Epilachna varivestis	_	100
		Cryptolaemus montrouzieri 3)	_	>1,000
		Coleomegilla maculata 3)	_	100
		Hippodamia convergens 3)	_	500
	Staphylinidae (ハネカクシ科)	Dalotia coriaria ³⁾ (Atheta coriaria)	_	>1,000
	Nymphalidae (タテハチョウ科)	Vanessa cardui	_	>1,000
Lepidoptera	Crambidae (ツトガ科)	Ostrinia nubilalis	_	>1,000
(チョウ目)	Tortricidae (ハマキガ科)	Cydia pomonella	_	>1,000
	Noctuidae (ヤガ科)	Helicoverpa zea	_	>1,000

- 1) 半数致死濃度。括弧内は95%信頼区間。
- 2) 無影響濃度:生存率に影響を生じなかった最大濃度。試験に用いた濃度上限である1,000 ppm で影響が認められなかった場合は>1,000ppm とした。
- 3) 非標的昆虫。これら以外の11種は米国における農業害虫。

PAT 蛋白質

PAT 蛋白質は S. viridochromogenes に由来する。除草剤グルホシネートは、その活性成分である L -グルホシネートによりグルタミン合成酵素活性を阻害するため、基質であるアンモニアが植物体内に蓄積し植物は枯死する。PAT 蛋白質は、L -グルホシネートをアセチル化し、N-アセチル-L -グルホシネートに変え無毒化することで、植物体にグルホシネートに対する耐性を付与する(OECD, 2002)。なお、トウモロコシでの発現を最適化するため pat 遺伝子の塩基配列を改変しているが 20 、産生される PAT 蛋白質のアミノ酸配列に変化はない。

10

5

PMI 蛋白質

PMI 蛋白質は *E.coli* に由来し、マンノース-6-リン酸とフルクトース-6-リン酸を可逆的に相互変換する。トウモロコシを含む多くの植物はマンノースを炭素源として利用できないが、PMI 蛋白質を産生する植物は炭素源としてマンノースを含む培地において生長することが可能なため、組換え植物の選抜マーカーとして用いられる(Negrotto *et al.*, 2000;第一.2.(3).ハ.①、28 ページ)。

15

b. アレルギー性を有することが明らかとなっている蛋白質との相同性

20

Comprehensive Protein Allergen Resource(COMPARE)データベース³⁾(2017年2月版)を用い、IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質と既知アレルゲンのアミノ酸配列を比較した。連続する 8 アミノ酸の一致の検索及び FASTA アルゴリズムによる類似配列の検索を行った結果、IPD072Aa 蛋白質及び PAT 蛋白質と既知アレルゲンのアミノ酸配列に類似性は認められなかった(添付資料 1 の Appendix 2)。PMI 蛋白質についても既知アレルゲンとの間に有意な類似性は認められなかった。

25

③ 宿主の持つ代謝系を変化させる場合はその内容

30

DvSSJIdsRNA の殺虫活性は WCR 及びその近縁種であるサザンコーンルートワームに特異的であり、試験に用いた他の昆虫に対して活性は認められていない (表 3、18 ページ)。また、RNAi の効果は塩基配列特異的であり、Ssk 遺伝子のオルソログは DvSSJIdsRNA の標的となる可能性があるが、当該遺伝子のオルソログはトウモロコシには存在しない(Hu et~al.、2016)。

35

IPD072Aa 蛋白質の殺虫活性は WCR に特異的であり、試験に用いた他の昆虫に対して活性は認められていない(表 4、21 ページ)。また、当該蛋白質のアミノ酸配列について、酵素蛋白質を含めた既知の蛋白質のモチーフ或いはドメイン等との類似性は認められていない(Schellenberger et~al., 2016)。

²⁾ 塩基配列が改変されているため、添付資料においては mo pat と表記。

³⁾ Health and Environmental Science Institute(HESI)によるデータベース (http://comparedatabase.org)、保持配列数 1,970。

PAT 蛋白質は基質特異性を有し、除草剤グルホシネートの活性成分である L-グルホシネートの遊離アミノ基をアセチル化する反応を触媒するが、他のアミノ酸や D-グルホシネートを基質としない (OECD, 1999)。

PMI 蛋白質は基質特異性を有し、マンノース 6-リン酸とフルクトース 6-リン酸との異性化を触媒するが、他の天然基質は知られていない(Freeze, 2002)。

また、これらのRNA及び蛋白質の作用機作は互いに独立していると考えられることから、相互に影響する可能性は低い。

以上のことから、これら RNA 及び蛋白質が宿主の持つ代謝系を変化させる可 10 能性は低いと考えられた。

(2) ベクターに関する情報

イ 名称及び由来

5 目的遺伝子の導入に用いたベクターはプラスミド PHP74643 であり (図 4、26 ページ)、アグロバクテリウム (*Agrobacterium tumefaciens*) 等由来のプラスミド pSB1 から作製された (Komari *et al.*, 1996)。

口 特性

10

15

20

25

30

35

40

① ベクターの塩基数及び塩基配列

プラスミド PHP74643 の塩基数は 71,116 bp であり、挿入 DNA 領域の塩基数は 13,876 bp である。挿入 DNA 領域を含む T-DNA 領域の塩基配列を添付資料 1の Appendix 1 に示した。

② 特定の機能を有する塩基配列がある場合は、その機能

プラスミド PHP74643 の外側骨格領域には、微生物を用いてプラスミドを増殖させる際に用いた選抜マーカーとして抗生物質スペクチノマイシン耐性 (spc) 遺伝子及びテトラサイクリン耐性 (tetA) 遺伝子が含まれている。しかしながら、これら抗生物質耐性遺伝子は T-DNA 領域の外側に位置するため、宿主の細胞には導入されない。実際に、 T_3 世代 (図 6、28 ページ) の種子から抽出したゲノム DNA を用い、外側骨格 5 領域 (LB の外側領域、spc、tetA、virG、RB の外側領域)を対象とした PCR 分析を行った結果、抗生物質耐性遺伝子を含むこれらの領域が本組換えトウモロコシに導入されていないことが確認された(添付資料 1 の Appendix 3)。

また、PHP74643 の T-DNA 領域のうち、染色体に挿入されなかった外側骨格領域には、zm-wus2遺伝子、zm-odp2遺伝子、FIp遺伝子及び DsRed2遺伝子の発現カセットが含まれる。これらの遺伝子は、T-DNA 領域が宿主の細胞に移入された後、染色体に挿入されることなく一過的に蛋白質を産生することにより機能する。zm-wus2遺伝子及び zm-odp2遺伝子は、形質転換における植物体の再生率を向上させる(Lowe et al., 2016)。Flp遺伝子は、FRT1 及び FRT87 において部位特異的組換えを誘導することにより、挿入 DNA 領域を染色体上の意図した位置に挿入することを可能にする(第一.2. (3) .イ、25 ページ)。なお、DsRed2遺伝子は赤色蛍光による選抜マーカーとして機能するが、本組換えトウモロコシの作出には利用していない。これらの遺伝子を含む外側骨格領域が宿主の染色体に挿入されていないことは、 T_0 世代における塩基配列解析により確認した(第一.2. (4) .②、29 ページ)。

③ ベクターの感染性の有無及び感染性を有する場合はその宿主域に関する情報 プラスミド PHP74643 に感染性はない。

(3) 遺伝子組換え生物等の調製方法

イ 宿主内に移入された核酸全体の構成

5

挿入 DNA 領域は、pmi 遺伝子、pat 遺伝子、DvSSJ1dsRNA 及び ipd072Aa 遺伝子の発現カセットを含む。プラスミド PHP74643 における挿入 DNA 領域の構成を図 4 (26 ページ) に示した。

10

また、本組換えトウモロコシの染色体に挿入された核酸全体について、添付資料 3 及び図 5 (27 ページ) に示した。本組換えトウモロコシの作出においては、挿入 DNA 領域が染色体へ挿入されることによって内在性遺伝子の破壊が生じることのないよう、部位特異的組換えを用いた。このため、挿入 DNA 領域に加えて、部位特異的組換えに関与する配列も本組換えトウモロコシの染色体に挿入されている。

15

20

25

30

なお、PHP74643 の T-DNA 領域全体が染色体に挿入される可能性もあるが、 後述するように、本組換えトウモロコシの T_0 世代を用いて、意図した部位特異的 組換えだけが生じていることを確認した(第一.2. (4) .②、29 ページ)。

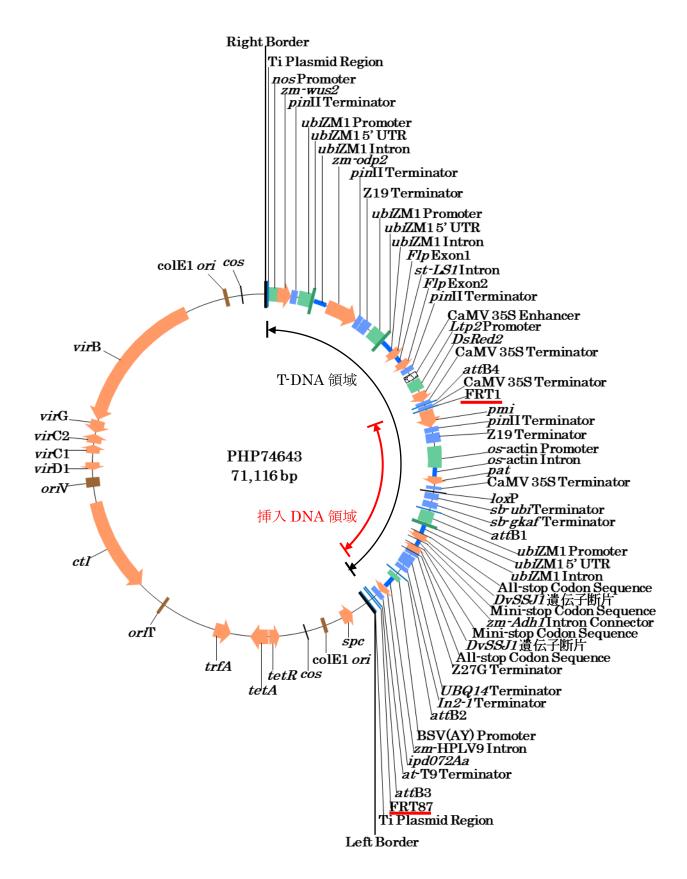


図 4 プラスミド PHP74643 における供与核酸の構成 染色体に挿入される領域は、赤下線で示した FRT1 及び FRT87 に挟まれた挿入 DNA 領域である。

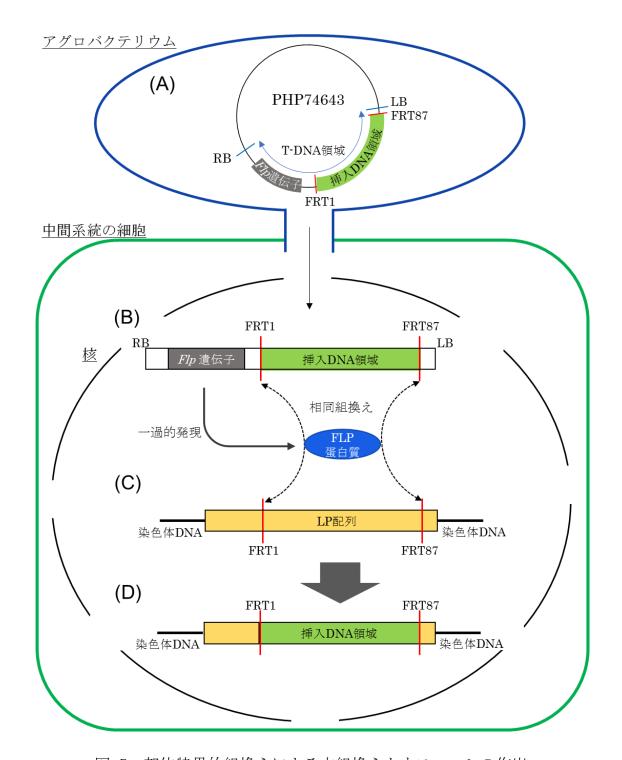


図 5 部位特異的組換えによる本組換えトウモロコシの作出

A: アグロバクテリウム中の導入用プラスミド PHP74643。

- B: PHP74643 の T-DNA 領域。アグロバクテリウムから中間系統の細胞に導入され、核内で一過的に FIp 遺伝子を発現する。その後植物体から失われる。
- C: 中間系統の染色体 DNA に予め組み込まれていた LP 配列。
- D: 本組換えトウモロコシの染色体 DNA 上の挿入 DNA 領域。一過的に発現した FLP 蛋白質の機能により、染色体 DNA 上の LP 配列内の FRT1 及び FRT87 配列と、導入された TDNA 領域の同じ配列との間で相同組換えが誘起され、両配列に挟まれた領域が置換された。

ロ 宿主内に移入された核酸の移入方法

本組換えトウモロコシの染色体に挿入された核酸のうち、LP 配列については アグロバクテリウム法及びパーティクルガン法を、挿入 DNA 領域についてはア グロバクテリウム法を用いて移入した(添付資料 3)。

ハ 遺伝子組換え生物等の育成の経過

5

10

15

20

25

30

① 核酸が移入された細胞の選抜方法

核酸が移入された細胞は、炭素源としてマンノースを添加した培地で胚を生育 させることにより選抜した。

② 核酸の移入方法がアグロバクテリウム法の場合はアグロバクテリウムの菌体 の残存の有無

アグロバクテリウムの除去は、培地に抗生物質セフォタキシム及びチメンチンを添加することにより行った。また、本組換えトウモロコシの T_3 世代の種子及び T_0 世代の葉から抽出した DNA 中にプラスミド PHP74643 の外側骨格領域は認められず(添付資料 1 の Appendix 3 及び 5)、アグロバクテリウムの菌体の残存はないと考えられる。

③ 核酸が移入された細胞から、移入された核酸の複製物の存在状態を確認した系統、隔離ほ場試験に供した系統その他の生物多様性影響評価に必要な情報を収集するために用いられた系統までの育成の経過

本組換えトウモロコシの育成経過は図 6(28 ページ) のとおりであり、本図中に、該当する系統及び本申請における承認対象の範囲を示した。承認対象の範囲は、 T_1 世代以降である。

(社外秘情報につき非開示)

図 6 本組換えトウモロコシの育成経過

- (4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性
 - ① 移入された核酸の複製物が存在する場所

5

10

15

20

25

30

移入された核酸が植物の染色体に取り込まれると、後代においてメンデルの法則に従い分離する。本組換えトウモロコシに移入された核酸の複製物の分離比を検討するため、 T_2 世代及び BC_2F_1 世代(図 6、28ページ)の 3 葉期の葉から抽出した DNA を用いて PCR 分析を行った(添付資料 1 の Appendix 4)。分析には、導入遺伝子である DvSSJ1 遺伝子断片、ipd072Aa 遺伝子、pat 遺伝子及びpmi 遺伝子並びに LP 配列と近傍 DNA との接合領域の各々に特異的なプライマーを用いた。

その結果、 T_2 世代及び BC_2F_1 世代における分離比は、それぞれ期待される分離比3:1 に適合したことから(表 5、29 ページ)、本組換えトウモロコシに移入された核酸の複製物が染色体上に存在することが確認された。

表 5 本組換えトウモロコシに移入された核酸の複製物の分離比

世代	分離比の期待値	PCR 分析の結果			P値 ³⁾
世 1人	陽性:陰性	サンプル数	陽性 1)	陰性 2)	P個"
T_2	3:1	100	70	30	0.2482
$\mathrm{BC}_2\mathrm{F}_1$	1:1	100	46	54	0.4237

- 1) *DvSSJ1* 遺伝子断片、*ipd072Aa* 遺伝子、*pat* 遺伝子、*pmi* 遺伝子及び接合領域の全てが検出された個体数。
- 2) 上記のいずれも検出されなかった個体数。
- 3) カイ二乗検定。P値が 0.05 未満の場合、統計学的有意差有り。
- ② 移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性

本組換えトウモロコシに移入された核酸について確認するため、 T_0 世代の葉から抽出した DNA を断片化し、そのうち導入用プラスミド PHP74643 由来の配列を含む断片の塩基配列を解析した (Southern by Sequence 解析 4); Zastrow-Hayes *et al.*, 2015、添付資料 1 の Appendix 5)。

その結果、本組換えトウモロコシの DNA 中には、導入用プラスミド PHP74643 由来の配列として挿入 DNA 領域だけが認められ、その他の外側骨格領域の配列は認められなかった。 挿入 DNA 領域の 5'末端及び 3'末端と LP 配列との接合領域がそれぞれ 1 箇所特定されたことから、部位特異的組換えによって挿入 DNA

⁴⁾ キャプチャー技術と次世代シークエンスを組み合わせた解析手法。導入用プラスミドの全領域を網羅するプローブセット(全長 70~74 塩基)を用いて、約 400 bp に断片化した植物ゲノム DNA から導入用プラスミド由来の配列を含む DNA 断片を選択的に回収(キャプチャー)し、回収された DNA 断片だけを次世代シークエンサーを用いて解析する。得られた塩基配列を導入用プラスミドの配列と照合し、挿入された DNA のコピー数及び挿入箇所を確認する。

領域が意図した位置に挿入されたことが確認された。また、挿入 DNA 領域とトウモロコシのゲノム DNA との接合領域は認められなかったことから、LP 配列以外の場所への非意図的な挿入は生じていないことが確認された。これらのことから、本組換えトウモロコシにおいては、PHP74643 由来の挿入 DNA 領域が LP 配列中に1コピー挿入されていることが確認された(第一.2.(3).イ、25ページ)。

さらに、 T_2 世代及び BC_2F_1 世代(図 6、28 ページ)の葉から抽出した DNA を用いて、各遺伝子特異的プライマー及び本組換えトウモロコシ特異的プライマーを用いた PCR 分析を行った(添付資料 1 の Appendix 5)。その結果、本組換えトウモロコシ中の導入遺伝子は 1 コピーであり、後代に安定して伝達されていることが確認された。

- ③ 染色体上に複数コピーが存在している場合は、それらが隣接しているか離れているかの別
- ④ (6)の①において具体的に示される特性について、自然条件の下での個体間 20 及び世代間での発現の安定性

本組換えトウモロコシにおいて、各導入遺伝子から産生される RNA 又は蛋白質が複数世代において安定して発現されていることを確認するため、本組換えトウモロコシの T_2 世代及び BC_2F_1 世代(図 6、28 ページ)を用いて分析を行った(添付資料 1 の Appendix 6 及び 7)。

DvSSJIdsRNA の産生を QuantiGene Plex 2.0 法によって分析した。その結果、いずれの個体にも当該 RNA が発現していることが確認された(表 6、30 ページ)。

表 6 DvSSJ1dsRNAの産生量

(pg / mg 乾物重)

	世代	$DvSSJ1$ dsRNA $^{1)}$
T ₂ ²⁾	平均値 ± 標準偏差	9.50 ± 4.22
122	最小値 - 最大値	4.66 - 13.74
BC ₂ F ₁ ²⁾	平均値 ± 標準偏差	11.43 ± 2.18
DC2F127	最小値 - 最大値	8.85 - 13.95

- 1) 9 葉期の根における産生量。定量下限値: 0.090 (pg/mg 乾物重)。
- 2) いずれの世代についても n=5。各個体について予め PCR 法 により組換え体であることを確認した。

35

5

10

15

25

IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質の発現を ELISA 法によって分析した。その結果、いずれの個体にもこれらの蛋白質の全てが産生されていることが確認された(表 7、31 ページ)。

表 7 各蛋白質の産生量

(ng / mg 乾物重)

世代		IPD072Aa 蛋白質 ¹⁾			PAT 蛋白質 ²⁾		PMI 蛋白質 ³⁾	
T_2 $^{4)}$	平均値 ± 標準偏差	53	±	3.9	6.2	± 0.74	15	± 1.3
	最小値 - 最大値	48	-	57	5.3	- 7.2	13	- 16
$\mathrm{BC}_2\mathrm{F}_1$ ⁴⁾	平均値 ± 標準偏差	43	±	6.6	11	± 0.84	14	± 1.3
	最小値 - 最大値	39	-	54	10	- 12	12	- 15

- 1) 9 葉期の根における産生量。定量下限値: 0.11 (ng/mg 乾物重)。
- 2) 9 葉期の葉における産生量。定量下限値: 0.11 (ng/mg 乾物重)。
- 3) 9 葉期の葉における産生量。定量下限値: 0.54 (ng/mg 乾物重)。
- 4) いずれの世代についても n=5。各個体について予め PCR 法により組換え体であることを確認した。
 - ⑤ ウイルスの感染その他の経路を経由して移入された核酸が野生動植物等に伝達されるおそれのある場合は、当該伝達性の有無及び程度

移入された核酸は伝達を可能とする配列を含まないため、ウイルスの感染その 他の経路を経由して野生動植物等に伝達されるおそれはない。

20 (5) 遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度及び信頼性

検出及び識別の方法:

本組換えトウモロコシは、各導入遺伝子に特異的なプライマーを用いたリアルタイム PCR 法による検出及び識別が可能である(添付資料 2)。

感度:

5

10

15

25

30

35

本法の検出限界値は導入遺伝子ごとに異なり、非組換えトウモロコシのゲノム DNA に対する本組換えトウモロコシのゲノム DNA の混入率として $0.1\%\sim10\%$ である (添付資料 2)。

信頼性:

4回の反復試験で再現性が得られている(添付資料2)。

- (6) 宿主又は宿主の属する分類学上の種との相違
 - ① 移入された核酸の複製物の発現により付与された生理学的又は生態学的特性 の具体的な内容

5

本組換えトウモロコシに付与された特性は、DvSSJIdsRNA 及び ipd072Aa 遺伝子によるコウチュウ目害虫抵抗性、pat 遺伝子による除草剤グルホシネート耐性並びに pmi 遺伝子による選抜マーカー特性である。

10

本組換えトウモロコシにコウチュウ目害虫抵抗性の形質が付与されたことを確認するため、2018年に米国アイオワ州、イリノイ州、サウスダコタ州及びミネソタ州のほ場で栽培した本組換えトウモロコシの F_1*^2 世代(図 6、28 ページ)について、2 葉期~4 葉期に 1 株あたり 750 個又は 1,500 個の WCR の卵を株元接種し、水熟期に根の食害を調査した(添付資料 1 の Appendix 8)。

15

その結果、本組換えトウモロコシがコウチュウ目害虫に対する抵抗性を有することが確認された(表 8、32ページ)。

表 8 本組換えトウモロコシにおけるコウチュウ目害虫抵抗性1)

20

(社外秘情報につき非開示)

本組換えトウモロコシに除草剤グルホシネート耐性の形質が付与されたことを確認するため、本組換えトウモロコシの T_2 世代及び BC_2F_1 世代(図 6、28ページ)について、播種 18 日後に除草剤グルホシネート 0.45 kg a.i.5/ha(通常量)を散布し、散布 4 日後に耐性の有無を目視により調査した(添付資料 1 の Appendix 8)。

その結果、本組換えトウモロコシが除草剤グルホシネート耐性を有することが確認された(表 9、33ページ)。

-	世代	本組換え トウモロコシ	非組換え トウモロコシ			
T_2	耐性個体数* (総個体数)	70 (70)	0 (30)			
$\mathrm{BC}_2\mathrm{F}_1$	耐性個体数* (総個体数)	46 (46)	0 (54)			

表 9 本組換えトウモロコシにおける除草剤グルホシネート耐性

また、前述のとおり (第一.2. (3) .ハ.①、28 ページ)、本組換えトウモロコシが *pmi* 遺伝子による選抜マーカー特性を有することが確認されている。

2 以下に掲げる生理学的又は生態学的特性について、遺伝子組換え農作物と宿 主の属する分類学上の種との間の相違の有無及び相違がある場合はその程度

本組換えトウモロコシの宿主は非組換えトウモロコシ PHR03 系統であり、導入遺伝子は DvSSJ1 遺伝子断片、ipd072Aa 遺伝子、pat 遺伝子及び pmi 遺伝子である。本組換えトウモロコシには、 DvSSJ1dsRNA 及び IPD072Aa 蛋白質が産生されることによりコウチュウ目害虫に対する抵抗性が付与され、PAT 蛋白質が産生されることにより除草剤グルホシネートに対する耐性が付与され、PMI 蛋白質が産生されることにより選抜マーカー特性が付与されている。

前述のとおり、*DvSSJ1*dsRNA の標的となる遺伝子はトウモロコシには含まれていないこと、IPD072Aa 蛋白質は既存の酵素蛋白質と類似性を有していないこと、PAT 蛋白質及び PMI 蛋白質は酵素活性を有するがそれぞれの基質と特異的に反応することから、これらの RNA 及び蛋白質が宿主の代謝経路に意図しない変化を及ぼす可能性は低いと考えられた(第一.2.(1).ロ.③、22 ページ)。また、これらの RNA 及び蛋白質の作用機作は互いに独立していると考えられることから(第一.2.(1).ロ.③、22 ページ)、相互に影響する可能性も低い。したがって、意図した特性であるコウチュウ目害虫抵抗性、除草剤グルホシネート耐性及び選抜マーカー特性を除き、本組換えトウモロコシの生理学的又は生態学的特性は従来のトウモロコシの種としての範囲を超えるものではないと考えられた。

5

20

25

^{10 *}目視により薬害及び枯死が認められなかった個体を耐性と判定した。

⁵⁾ active ingredient (活性主成分)

このため、隔離ほ場試験を行うに当たっては、本組換えトウモロコシの生理学的又は生態学的特性についてのデータを用いなくても、生物多様性影響評価を行うことが可能であると考えられた。

- 5 本組換えトウモロコシの隔離ほ場試験では、以下の生理学的及び生態学的特性 に関する項目を調査する予定である。なお、宿主であるトウモロコシと交雑可能 な近縁野生種は我が国に生息していないため、交雑性については調査しない。
 - ・形態及び生育の特性
 - ・生育初期における低温耐性
 - ・成体の越冬性
 - ・花粉の稔性及びサイズ
 - ・種子の生産量、脱粒性、休眠性及び発芽率
 - ・有害物質の産生性

15

- 3 遺伝子組換え生物等の使用等に関する情報
- (1) 使用等の内容
- 5 隔離ほ場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為。
 - (2) 使用等の方法

所 在 地:栃木県宇都宮市清原工業団地 19番地 2

デュポン株式会社宇都宮事業所内

名 称:デュポン・プロダクション・アグリサイエンス株式会社

組換え農作物隔離ほ場

使用期間:承認日から平成34年3月31日まで

15 隔離ほ場の施設

10

- ① 部外者の立入りを防止するため、隔離ほ場を取り囲むようにフェンスを設置している。
- ② 隔離ほ場であること、部外者は立入禁止であること及び管理責任者の氏名を明示した標識を見やすい所に掲げている。
- 20 ③ 隔離ほ場で使用した機械、器具、靴等に付着した土、本組換えトウモロコシ の種子等を洗浄によって除去するための洗い場を設置しているとともに、当 該トウモロコシの隔離ほ場の外への流出を防止するための設備を排水系統に 設置している。
- ④ 本組換えトウモロコシの種苗が、野鳥等の食害により拡散することを防止するため、播種時及び成熟期から収穫期には防鳥網を設置する。

隔離ほ場での作業要領

- ① 本組換えトウモロコシ及び比較対象の非組換えトウモロコシ以外の植物が、 隔離ほ場内で生育することを必要最小限に抑える。
- 30 ② 本組換えトウモロコシを隔離ほ場の外に運搬し、又は保管する場合は、当該 トウモロコシが漏出しない構造の容器に入れる。
 - ③ ②により運搬又は保管する場合を除き、本組換えトウモロコシの栽培終了後は、当該トウモロコシ及び比較対象の非組換えトウモロコシを隔離ほ場内にすき込む等により、確実に不活化する。
- 35 ④ 隔離ほ場で使用した機械、器具、靴等は、作業終了後、隔離ほ場内で洗浄すること等により、意図せずに本組換えトウモロコシが隔離ほ場の外に持ち出されることを防止する。
 - ⑤ 本組換えトウモロコシの花粉の飛散を防止するため、除雄又は雄穂の袋がけ を行う。
- 40 ⑥ 隔離ほ場が本来有する機能が十分に発揮されるように、設備の維持及び管理 を行う。
 - ⑦ ①から⑥までに掲げる事項を第一種使用等を行う者に遵守させる。
 - ⑧ 生物多様性影響が生ずるおそれがあると認められるに至った場合は、別に定

める緊急措置計画書に基づき、速やかに対処する。

(3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法

5

_

(4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置

10

緊急措置計画書を参照。

(!

(5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境で の使用等の結果

15

(6) 国外における使用等に関する情報

20

米国で 2015 年から 2017 年の間に約 0.046 ヘクタールのほ場で栽培を行ったが、本組換えトウモロコシと非組換えトウモロコシとの間で、生物多様性に影響を与えるような相違は報告されていない。

25

なお、我が国においては、隔離ほ場試験終了後に「食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為」における第一種使用の申請を行う予定である。その他、食品としての安全性確認申請を厚生労働省に、飼料としての安全性の確認申請を農林水産省に行う予定である。

第二 項目ごとの生物多様性影響の評価

第一.2.(6).②(33ページ)に記載したとおり、宿主及び導入遺伝子由来 RNA 及び蛋白質の特性を考慮し、隔離ほ場試験を行うに当たっては、本組換えトウモロコシの生理学的又は生態学的特性についてのデータを用いなくても、生物多様性影響評価を行うことが可能であると考えた。

1 競合における優位性

5

15

20

10 (1) 影響を受ける可能性のある野生動植物等の特定

植物が自然環境下で他の植物と競合するためには、当該植物が自然環境下で自生する、すなわち人の手を借りずに繁殖し、群落を維持することが必要である。植物の自生には種子の脱粒性及び休眠性が重要であるが、栽培作物であるトウモロコシは栽培化の過程でこれらの特性を失っており、自生することができない(OECD, 2003、Nakai *et al.*, 2015)。これまでに、我が国の自然環境下においてトウモロコシが自生するとの報告はない。

本組換えトウモロコシには、*DvSSJ1*dsRNA 及び IPD072Aa 蛋白質によるコウチュウ目害虫抵抗性、PAT 蛋白質による除草剤グルホシネート耐性及び PMI 蛋白質による選抜マーカー特性が付与されているが、いずれも上記特性に関与する形質ではない。このことから、これらの形質を有することにより本組換えトウモロコシが我が国の自然環境下で自生するようになることはなく、したがって競合における優位性が高まることもないと考えられた。

- 25 以上のことから、本組換えトウモロコシの競合における優位性に起因して生物 多様性影響を受ける可能性のある野生動植物等は特定されなかった。
 - (2) 影響の具体的内容の評価
- 30 -
 - (3) 影響の生じやすさの評価

35

(4) 生物多様性影響が生ずるおそれの有無等の判断

以上、本組換えトウモロコシは、限定された環境で一定の作業要領を備えた隔離は場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為の範囲内では、競合における優位性に起因する生物多様性影響を生ずるおそれはないと判断された。

2 有害物質の産生性

10

15

(1) 影響を受ける可能性のある野生動植物等の特定

5 トウモロコシが野生動植物の生息又は生育に影響を及ぼすような有害物質を産 生するとの報告はない。

本組換えトウモロコシに産生される DvSSJIdsRNA、IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質の作用は特異的であり、宿主の代謝経路に作用して有害物質を産生するとは考え難い(第一.2.(1).ロ.③、22 ページ)。また、IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質と既知アレルゲンとの間にアミノ酸配列の類似性は認められなかった(第一.2.(1).ロ.②.b、22 ページ)。

また、除草剤グルホシネート散布時、PAT蛋白質により N-アセチル-L-グルホシネートが産生される。しかしながら、本代謝産物の動物に対する毒性はグルホシネートより低く(食品安全委員会,2013)、農薬取締法の下、グルホシネートの分析対象化合物の一つとしてトウモロコシにおける残留基準値が定められ、農薬登録により安全な使用方法が定められ、人畜及び環境に対する安全性が確保されている(日本食品化学研究振興財団,2018)。

20 一方、本組換えトウモロコシは DvSSJIdsRNA 及び IPD072Aa 蛋白質により コウチュウ目昆虫に対して特異的に殺虫活性を示す (第一.2. (1).ロ.②、22 ページ)。

このことから、本組換えトウモロコシを隔離ほ場で栽培した場合に影響を受ける可能性のある野生動植物等としてコウチュウ目昆虫が特定された。さらに、山本ほか(2003)の評価手法を参考に、環境省のレッドリスト®に絶滅危惧種及び準絶滅危惧種として掲載されているコウチュウ目昆虫のうち、本組換えトウモロコシの花粉飛散又は植物体を腐植質と一緒に食餌することにより影響を受ける可能性のある種を検討した。その結果、生息地及び食性の点から4種が特定された(添

(2) 影響の具体的内容の評価

DvSSJIdsRNA 及び IPD072Aa 蛋白質の標的害虫であるウェスタンコーンル 35 ートワームに対する LC_{50} 値は、それぞれ 0.036 ppm 及び 15.9 ppm である(第 -.2.(1).-.2、15 ページ)。

(3) 影響の生じやすさの評価

40 生息地及び食性の点から、特定された4種のコウチュウ目昆虫が本隔離ほ場周 辺に局所的に生息しているとは考え難い(添付資料4)。

⁶⁾ 環境省レッドリスト 2017: http://www.env.go.jp/press/files/jp/105449.pdf.

また、我が国及び北米における調査によれば、トウモロコシ栽培ほ場周辺に堆積する花粉量は、ほ場から 10m 離れると 10 粒/cm²以下となる(Shirai and Takahashi, 2005、Hansen-Jesse and Obrycki, 2000)。さらに、本隔離ほ場における栽培では除雄を行うため、本組換えトウモロコシの花粉がほ場外に飛散する可能性は低い。加えて、本隔離ほ場における栽培では播種から収穫まで全て防鳥網内で行われ、栽培終了後は鋤込みを行うため、本組換えトウモロコシの植物体及び種子がほ場外に漏出する可能性も低い。

10 以上のことから、特定された 4 種のコウチュウ目昆虫が、隔離ほ場で栽培される本組換えトウモロコシの花粉飛散又は植物体を腐植質と一緒に食餌することにより個体群レベルで影響を受ける可能性は低いと考えられた。

(4) 生物多様性影響が生ずるおそれの有無等の判断

15 以上、本組換えトウモロコシは、限定された環境で一定の作業要領を備えた隔離は場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為の範囲内では、有害物質の産生性に起因する生物多様性影響を生ずるおそれはないと判断された。

3 交雑性

5

20

25

30

40

(1) 影響を受ける可能性のある野生動植物等の特定

宿主であるトウモロコシが我が国において野生化した事例はなく、また交雑可能な近縁野生種であるテオシント及び *Tripsacum* 属の自生も報告されていない。このため、本組換えトウモロコシの交雑性に起因して生物多様性影響を受ける可能性のある野生動植物等は特定されなかった。

(2) 影響の具体的内容の評価

35 (3) 影響の生じやすさの評価

(4) 生物多様性影響が生ずるおそれの有無等の判断

以上、本組換えトウモロコシは、限定された環境で一定の作業要領を備えた隔離は場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為の範囲内では、交雑性に起因する生物多様性影響を生ずるおそれはないと判断された。

4 その他の性質

_

第三 生物多様性影響の総合的評価

5

10

15

20

25

30

35

40

第一.2. (6).② (33ページ) に記載したとおり、宿主及び導入遺伝子由来 RNA 及び蛋白質の特性を考慮し、隔離ほ場試験を行うに当たっては、本組換えトウモロコシの生理学的又は生態学的特性についてのデータを用いなくても、生物多様性影響評価を行うことが可能であると考えた。

トウモロコシは、我が国において長年にわたり使用されてきたが、これまでに 我が国において野生化したり、有害物質を産生したりすることによって野生動植 物の生息又は生育に影響を及ぼしたという報告はない。また、我が国にトウモロ コシと交雑可能な野生植物は生息していない。

栽培作物であるトウモロコシは栽培化の過程で種子の脱粒性及び休眠性を失っており、自生することができない。本組換えトウモロコシには、*DvSSJI*dsRNA及び IPD072Aa 蛋白質によるコウチュウ目害虫抵抗性、PAT 蛋白質による除草剤グルホシネート耐性及び PMI 蛋白質による選抜マーカー特性が付与されているが、いずれもこれらの特性に関与する形質ではない。このことから、これらの形質を有することにより本組換えトウモロコシが我が国の自然環境下で自生するようになることはなく、したがって競合における優位性が高まることもないと考えられた。

以上、本組換えトウモロコシが競合における優位性に起因する生物多様性影響 を生ずるおそれはないと判断された。

本組換えトウモロコシに産生される *DvSSJ1*dsRNA、IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質の作用は特異的であり、宿主の代謝経路に作用して有害物質を産生するとは考え難い。また、IPD072Aa 蛋白質、PAT 蛋白質及び PMI 蛋白質と既知アレルゲンとの間にアミノ酸配列の類似性は認められなかった。

一方、本組換えトウモロコシ中に産生される *DvSSJ1*dsRNA 及び IPD072Aa 蛋白質は、ウェスタンコーンルートワーム等のコウチュウ目害虫に対して殺虫活性を示すことから、本組換えトウモロコシを隔離ほ場で栽培した場合に、花粉の飛散により影響を受ける可能性のある野生動植物等として、我が国に生息する絶滅危惧種及び準絶滅危惧種に指定されているコウチュウ目昆虫 4 種を特定した。しかしながら、これらコウチュウ目昆虫種の生息地や食草の点から、特定された4 種のコウチュウ目昆虫が本隔離ほ場周辺に局所的に生息する可能性は低いと考えられた。

また、トウモロコシのほ場周辺に堆積する花粉量は、ほ場から 10m 離れると 10 粒/cm²以下になると報告されている。さらに、本隔離ほ場における栽培では、除雄を行うことにより、花粉をほ場外に飛散させない措置をとる。加えて、本隔離ほ場における栽培では播種時及び成熟期から収穫期には防鳥網の設置を行い、栽培終了後には鋤込みを行うため、植物体及び種子がほ場外に漏出する可能性は考え難い。したがって、花粉の飛散又は植物体を腐植質と一緒に食餌することにより、コウチュウ目昆虫種が個体群レベルで本組換えトウモロコシによる影響を受ける可能性は低いと考えられた。

これらのことから、本組換えトウモロコシは、限定された環境で一定の作業要領を備えた隔離ほ場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為の範囲内では、有害物質の産生性に起因する生物多様性影響を生ずるおそれはないと判断された。

5

また、我が国において宿主であるトウモロコシと交雑可能な近縁野生種である テオシント及び *Tripsacum* 属の自生は報告されていないことから、交雑性に起因 する生物多様性影響が生ずるおそれはないと判断された。

10

以上、本組換えトウモロコシは、限定された環境で一定の作業要領を備えた隔離は場における栽培、保管、運搬及び廃棄並びにこれらに付随する行為の範囲内では、我が国における生物多様性影響を生ずるおそれはないと総合的に判断された。

参考文献

5

- An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W. and Ryan, C.A. (1989). Functional Analysis of the 3' Control Region of the Potato Wound-Inducible Proteinase Inhibitor II Gene. The Plant Cell 1: 115-122.
- Anderson, J.A, Staley, J., Challender, M. and Heuton, J. (2018). Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Research. 27: 103-113.
- Baum, J.A. and Roberts, J.K. (2014). Progress towards RNAi-mediated insect pest management. Advances in Insect Physiology. 47: 249-295.
- Callis, J., Carpenter, T., Sun, C.-W. and Vierstra, R.D. (1995). Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in *Arabidopsis thaliana* ecotype Columbia. Genetics. 139: 921-939.
- CFIA. (2012). The Biology of *Zea mays* (L.) (Maize).

 (http://www.inspection.gc.ca/plants/plants-with-noveltraits/applicants/directive-94-08/biology-documents/zea-mays-l/eng/1330985739405/1330985818367).

 Accessed on February 25th, 2014.
- Cheo, D.L., Titus, S.A., Byrd, D.R.N., Hartley, J.L., Temple, G.F. and Brasch, M.A. (2004). Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: Functional analysis of multi-segment expression clones. Genome Research. 14: 2111-2120.
- Christensen, A.H., Sharrock, R.A., and Quail, P.H. (1992). Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology. 18: 675-689.
- Dale, E.C. and Ow, D.W. (1990). Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene. 91: 79-85.
- Das, O.P., Ward, K., Ray, S. and Messing, J. (1991). Sequence variation between alleles reveals two types of copy correction at the 27-kDa Zein locus of maize.

 Genomics. 11: 849-856.

- de Freitas, F.A., Yunes, J.A., da Silva, M.J., Arruda, P. and Leite, A. (1994). Structural characterization and promoter activity analysis of the γ-kafirin gene from sorghum. Molecular and General Genetics. 245: 177-186.
- Dennis, E.S., Gerlach, W.L., Pryor, A.J., Bennetzen, J.L., Inglis, A., Llewellyn, D., Sachs, M.M., Ferl, R.J. and Peacock, W.J. (1984). Molecular analysis of the alcohol dehydrogenase (*Adh1*) gene of maize. Nucleic Acids Research. 12(9): 3983-4000.
- Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. and Goodman, H.M. (1982). Nopaline synthase: Transcript mapping and DNA sequence. Journal of Molecular and Applied Genetics 1: 561-573.
- Dymecki, S.M. (1996). A modular set of Flp, FRT and lacZ fusion vectors for manipulating genes by site-specific recombination. Gene. 171: 197-201.
 - Eckes, P., Rosahl, S., Schell, J. and Willmitzer, L. (1986). Isolation and characterization of a light-inducible, organ-specific gene from potato and analysis of its expression after tagging and transfer into tobacco and potato shoots. Molecular and General Genetics. 205: 14-22.
 - FAO. (2017). FAOSTAT. (http://www.fao.org/faostat/en/#home). Accessed on February 19th, 2018.

25

- Fling, M.E., Kopf, J. and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3" (9)-O-nucleotidyltransferase. Nucleic Acids Research. 13: 7095-7106.
- Franck, A., Guilley, H., Jonard, G., Richards, K. and Hirth, L. (1980). Nucleotide sequence of cauliflower mosaic virus DNA. Cell. 21: 285-294.
- Freeze, H. H. (2002). Phosphomannose isomerase. Handbook of glycosyltransferases and related genes. Edition 1. Taniguchi, N., Honke, K. and Fukuda, M., Eds. Springer-Verlag, Tokyo and New York: pp. 595-599.
 - Guilley, H., Dudley, R.K., Jonard, G., Balàzs, E. and Richards, K.E. (1982). Transcription of cauliflower mosaic virus DNA: Detection of promoter sequences, and characterization of transcripts. Cell. 30: 763-773.
 - Hansen-Jesse, L.C. and Obrycki. J. J. (2000). Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia. 125: 241-248.

- Hartley, J.L., Temple, G.F. and Brasch, M.A. (2000). DNA cloning using in vitro site-specific recombination. Genome Research. 10: 1788-1795.
- Hershey, H.P. and Stoner, T.D. (1991). Isolation and characterization of cDNA clones for RNA species induced by substituted benzenesulfonamides in corn. Plant Molecular Biology. 17: 679-690.
 - Hu, X., Richtman, N.M., Zhao, J.-Z., Duncan, K.E., Niu, X., Procyk, L.A., Oneal, M.A., Kernodle, B.M., Steimel, J.P., Crane, V.C., Sandahl, G., Ritland, J.L., Howard, R.J., Presnail, J.K., Lu, A.L. and Wu, G. (2016). Discovery of midgut genes for the RNA interference control of corn rootworm. Scientific Reports. 6: 30542.

- Kalla, R., Shimamoto, K., Potter, R., Nielsen, P.S., Linnestad, C. and Olsen, O.-A.
 (1994). The promoter of the barley aleurone-specific gene encoding a putative
 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. The Plant Journal. 6: 849-860.
- Katzen, F. (2007). Gateway® recombinational cloning: a biological operating system. Expert Opinion on Drug Discovery. 2: 571-589.
 - Kay, R., Chan, A., Daly, M. and McPherson, J. (1987). Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science. 236: 1299-1302.
 - Keil, M., Sanches-Serrano, J., Schell, J. and Willmitzer, L. (1986). Primary structure of a proteinase inhibitor II gene from potato (*Solanum tuberosum*). Nucleic Acids Research. 14(14): 5641-5650.
- Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. (1996). Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by *Agrobacterium tumefaciens* and segregation of transformants free from selection markers. The Plant Journal 10: 165-174.
- Liu, H., Shi, J., Sun, C., Gong, H., Fan, X., Qiu, F., Huang, X., Feng, Q., Zheng, X., Yuan, N., Li, C., Zhang, Z., Deng, Y., Wang, J., Pan, G., Han, B., Lai, J. and Wu, Y. (2016). Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences. 113: 4964-4969.

- Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.-J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., Igo, E., Rudrappa, B., Shamseer, P., Bruce, W., Newman, L., Shen, B., Zheng, P., Bidney, D., Falco, C., Register, J., Zhao, Z.-Y., Xu, D., Jones, T. and Gordan-Kamm, W. (2016). Morphogenic regulators *Baby boom* and *Wuschel* improve monocot transformation. The Plant Cell. 28: 1998-2015.
- Luna, S.V., Figueroa, J.M., Baltazar, B.M., Gomez, R.L., Townsend, R. and Schoper, J.B. (2001). Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science, 41, 1551-1557.
 - Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G. and Laux, T. (1998). Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell. 95: 805-815.
 - Nakai, S., Hoshikawa, K., Shimono, A. and Osawa, R. (2015). Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops. Transgenic Research. 24: 929-944.
 - NCGA. (2017). World of Corn 2017. (http://www.worldofcorn.com/pdf/WOC-2017.pdf). Accessed on April 21st, 2017.

15

20

25

- Negrotto, D., Jolley, M., Beer, S., Wenck, A.R. and Hansen, G. (2000). The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (*Zea mays* L.) via Agrobacterium transformation. Plant Cell Reports. 19: 798-803.
- OECD. (1999). Series on Harmonization of Regulatory Oversight in Biotechnology No. 11: Consensus document on general information concerning the genes and their enzymes that confer tolerance to phosphinothricin herbicide. ENV/JM/MONO(99)13.
- 35 (http://www.zhb.gov.cn/download/5198.pdf) Accessed on March 12th, 2018.
- OECD. (2002). Series on Harmonization of Regulatory Oversight in Biotechnology,
 No. 25. MODULE II: PHOSPHINOTHRICIN. ENV/JM/MONO(2002)14.

 (http://www.oecd.org/dataoecd/17/39/46815748.pdf)
 Accessed on March 12th, 2018.

- OECD. (2003). Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 27: Consensus Document of the Biology of *Zea mays* subsp. *mays* (Maize). ENV/JM/MONO(2003)11.
 - (http://www.oecd.org/dataoecd/17/40/46815758.pdf)
- 5 Accessed on February 25th, 2014.

15

25

- Oleson, J.D., Park, Y.-L., Nowatzki, T.M. and Tollefson, J.J. (2005). Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). Journal of Economic Entomology. 98(1): 1-8.
- Pleasants, J.M., Hellmich, R.L., Dively, G.P., Sears, M.K., Stanley-Horn, D.E., Mattila, H.R., Foster, J.E., Clark, P and Jones, G. D. (2001). Corn pollen deposition on milkweeds in and near cornfields. Proceedings of the National Academy of Sciences. 98: 11919-11924.
 - Proteau, G., Sidenberg, D. and Sadowski, P. (1986). The minimal duplex DNA sequence required for site-specific recombination promoted by the FLP protein of yeast in vitro. Nucleic Acids Research. 14(2): 4787-4802.
- Schellenberger, U., Oral, J., Rosen, B.A., Wei, J.-Z., Zhu, G., Xie, W., McDonald, M.J., Cerf, D.C., Diehn, S.H., Crane, V.C., Sandahl, G.A., Zhao, J.-Z., Nowatzki, T.M., Sethi, A., Liu, L., Pan, Z., Wang, Y., Lu, A.L., Wu, G. and Liu, L. (2016). A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science. 354: 634-637.
 - Sears, M.K., Stanley-Horn, D.E. and Matilla, H.R. (2000). Preliminary report on the ecological impact of Bt corn pollen on the Monarch butterfly in Ontario. (http://cera-gmc.org/files/cera/GmCropDatabase/docs/articles/searsreport. pdf).
- 30 Accessed on April 23rd, 2015.
 - Shirai, Y. and Takahashi, M. (2005). Effects of transgenic Bt corn pollen on a non-target lycaenid butterfly, *Pseudozizeeria maha*. Applied Entomology and Zoology, 40 (1), 151-159.
 - Tao, Y., Bidney, D., Gordon-Kamm, W. and Lyznik, L. (2007). Modified FRT recombination sites and methods of use. World Intellectual Property Organization. Application No.PCT/US2006/027380.
- Timmons, L. and Fire, A. (1998). Specific interference by ingested dsRNA. Nature. 395: 854.

- Tomizawa, J.-I., Ohmori, H. and Bird, R.E. (1977). Origin of replication of colicin E1 plasmid DNA. Proceedings of the National Academy of Sciences. 74: 1865-1869.
- 5 Wasson-Blader, T. (2001). Living Colors[™] DsRed2: Improved red fluorescent protein for use in living cells. Clontechniques. 16: 2-3.
 - Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E. and Puhler, A. (1988). Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from *Streptomyces viridochromogenes* Tu494 and its expression in *Nicotiana tabacum*. Gene. 70(1): 25-37.
 - Wych, R.D. (1988). Production of hybrid seed corn. In G.F. Sprague and J.W. Dudley (eds.), Corn and Corn Improvement (3rd ed.). Madison, Wisconsin: American Society of Agronomy, Inc.: 565-607.
 - Yanagihashi, Y., Usui, T., Izumi, Y., Yonemura, S., Sumida, M., Tsukita, S., Uemura, T. and Furuse, M. (2012). Snakeskin, a membrane protein associated with smooth septate junctions, is required for intestinal barrier function in *Drosophila*. Journal of Cell Science. 125:1980-1990.
 - Zastrow-Hayes, G.M., Lin, H., Sigmund, A.L., Hoffman, J.L., Alarcon, C.M., Hayes, K.R., Richmond, T.A., Jeddeloh, J.A., May, G.D. and Beatty, M.K. (2015). Southern-by-Sequencing: A robust screening approach for molecular characterization of genetically modified crops. The Plant Genome. 8: 1-15.
 - Zhuang, J., Wang, J.-H., Zhang, X. and Liu, Z.-X. (2011). Molecular characterization of banana streak virus isolate from *Musa Acuminata* in China. Virologica Sinica. 26(6): 393-402.
 - 柿本陽一・山田実. (2001). "トウモロコシの起源と特性 転作全書 第三巻 雑穀". 農山漁村文化協会. 東京.
 - 菊池一徳. (1987). "トウモロコシの生産と利用". 光琳. 東京.
 - 財務省. (2018). 財務省貿易統計.

15

20

25

30

35

(http://www.customs.go.jp/toukei/info/index.htm). Accessed on February 19th, 2018.

40 食品安全委員会. (2013). 農薬評価書 グルホシネート(第 3 版). (https://www.fsc.go.jp/fsciis/attachedFile/download?retrievalId=kya2013061 2154&fileId=201). Accessed on April 16th, 2018.

- 瀧澤康孝. (2001). "子実用トウモロコシの栽培 転作全書 第三巻 雑穀". 農山漁村 文化協会. 東京.
- 千藤茂行. (2001). "トウモロコシの品種生態. IV 採取. 転作全書 第三巻 雑穀". 5 農山漁村文化協会. 東京.
 - 戸澤英男. (2005). "トウモロコシ-歴史・文化、特性・栽培、加工・利用-". 農山漁村 文化協会.
- 10 中村茂文. (2001). "生育のステージと生理, 生態 転作全書 第三巻 雑穀". 農山漁村文化協会. 東京.
 - 西尾剛. (2002). "新農学実験マニュアル 改訂第3版". 株式会社ソフトサイエンス社.
- 15 日本食品化学研究振興財団. (2018). 農薬等の基準値 品目名:グルホシネート. (http://ffcr.sakura.ne.jp/pesticide_db/html/front/pesticide_detail?id=18900). Accessed on February 6th, 2018.
- 農林水産省. (2014). 飼料用トウモロコシの流通・加工実態調査結果報告書 平成 26 20 年 3 月 26 日公表.

(http://www.maff.go.jp/j/press/syouan/nouan/pdf/140326-01.pdf). Accessed on April 23rd, 2015.

農林水産省. (2017a). 平成 28 年産作物統計(普通作物・飼料作物・工芸農作物) 25 平成 29 年 6 月 16 日公表.

(https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&stat_infid=000031589177&lid=000001173263).

Accessed on February 19th, 2018.

- 30 農林水産省. (2017b). 平成 28 年産野菜生産出荷統計 平成 29 年 11 月 27 日公表. (https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&stat _infid=000031645267&lid=000001196823).

 Accessed on February 19th, 2018.
- 35 農林水産省. (2017c). 「平成 27 年度トウモロコシ生育等実態調査」の結果について 平成 29 年 3 月 22 日公表.

(http://www.maff.go.jp/j/press/syouan/nouan/170322.html). Accessed on March 22nd, 2017.

- 農林水産省. (2018). 飼料をめぐる情勢 平成 30 年 1 月公表. (http://www.maff.go.jp/j/chikusan/sinko/lin/l_siryo/index.html). Accessed February 19th, 2018.
- 5 山田実. (2001). "トウモロコシの起源と特性 転作全書 第三巻 雑穀". 農山漁村 文化協会. 東京.
- 山本勝利, 大黒俊哉, 松村雄. (2003). "III. 農業環境技術研究所における Bt トウモロコシ緊急調査 5. わが国における鱗翅目のレッドリスト掲載種への Bt トウモロコシ花粉の影響評価 農業環境研究叢書 第 14 号". 独立行政法人農業環境技術研究所. 茨城.

緊急措置計画書

平成30年8月8日

氏名 デュポン・プロダクション・アグリサイエンス株式会社 代表取締役社長 田中 能之 住所 東京都千代田区永田町二丁目 11 番 1 号

コウチュウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ(DvSSJ1, ipd072Aa, pat, Zea mays subsp. mays (L.) Iltis)(DP23211 及び DP62151, OECD UI: DP-Ø23211-2 及び DP-Ø62151-8)(以下「本組換えトウモロコシ」という。)について、今後、生物多様性影響が生ずるおそれがあると科学的に認められた場合、当該影響を効果的に防止するため、以下の措置をとることとする。

1 第一種使用等における緊急措置を講ずるための実施体制及び責任者

第一種使用等を行う栽培試験責任者は、生物多様性影響管理委員会(表 10、51ページ)に報告を行う。また、弊社グループ会社内に緊急措置に適切に対応するための危機対策本部(表 11、51ページ)を速やかに設置する。危機対策本部が、生物多様性影響管理委員会、栽培試験責任者及び本組換えトウモロコシの開発者である米国パイオニア・ハイブレッド・インターナショナル社との円滑な連絡を確保する。

(個人名・所属は個人情報につき非開示)

2 第一種使用等の状況の把握の方法

第一種使用等を行っている栽培試験者が、第一種使用等の状況に関して情報収集を 行う。

3 第一種使用等をしている者に緊急措置を講ずる必要があること及び緊急措置の内容を周知するための方法

本組換えトウモロコシが我が国の生物多様性に影響を与えるおそれがあると科学的に認められた場合、栽培試験関係者に伝える。また、必要に応じて、弊社のホームページ等、国内の適切な媒体を通して、一般に広く知らせる。

4 遺伝子組換え生物等を不活化し又は拡散防止措置をとり、その使用等を継続する ための具体的な措置の内容

本組換えトウモロコシが我が国の生物多様性に影響を与えるおそれがあると科学的に認められた場合、直ちに栽培試験を中止し、本組換えトウモロコシを隔離ほ場内において鋤込む等、不活化又は拡散防止のための必要な措置を取る。

5 農林水産大臣及び環境大臣への連絡体制

本組換えトウモロコシが我が国の生物多様性に影響を与えるおそれがあると科学的に認められた場合、弊社は、速やかに農林水産省消費・安全局農産安全管理課及び環境省自然環境局野生生物課に連絡するとともに、緊急措置対応のための体制及び連絡窓口を報告する。

デュポン・プロダクション・アグリサイエンス株式会社 隔離ほ場 受容環境

I. 隔離は場の所在地等

5

1. 名称

デュポン・プロダクション・アグリサイエンス株式会社 組換え農作物隔離ほ場

10

2. 住所

栃木県宇都宮市清原工業団地 19 番地 2 デュポン株式会社宇都宮事業所内

15 3. 連絡先電話番号

03-5521-8549 (デュポン・プロダクション・アグリサイエンス株式会社 登録部)

028-667-5641 (デュポン・プロダクション・アグリサイエンス株式会社 宇都宮事務所)

20

4. 地図

別紙1参照

25

II. 責任者等

隔離ほ場試験の責任者、隔離ほ場の管理責任者

30 (個人名・所属は個人情報につき非開示)

III. 試験期間

承認日から平成34年(2022年)3月31日まで

35

IV. 施設概要

部外者の立入りを禁止するためのフェンス、立入禁止であること及び管理責任者を明示するための標識、機械、器具又は靴等に付着した遺伝子組換え農作物を洗浄するための洗い場並びに大雨による農作物の流出を防ぐための側溝を設置している。

V. 面積

1. 隔離ほ場全体の面積

5

 1904.5 m^2

- 2. 試験に使用する面積
- $10 251 \text{ m}^2$
 - 3. 試験区の配置図

図 7 及び図 8 (55 及び 56 ページ) 参照

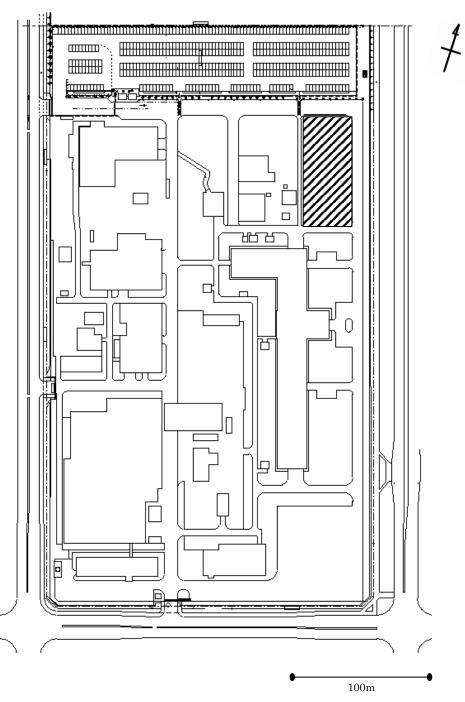


図 7 デュポン株式会社宇都宮事業所内におけるデュポン・プロダクション・ア グリサイエンス株式会社 組換え農作物隔離ほ場の位置 隔離ほ場の位置を斜線で示した。



図 8 隔離ほ場施設及び栽培試験区の配置図

VI. 隔離ほ場の周辺環境

- 1. 隔離ほ場周辺の地形
- 5 隔離ほ場の標高は約 120 m である。ほ場の北東及び北西約 1 km にそれぞれ刈 沼川及び四ヶ字用水が、また北西約 2 km に鬼怒川があり、これらの標高は約 100 m である(別紙 1)。
 - 2. 土地利用状況

10

25

隔離ほ場は、清原工業団地の中央に位置する。清原工業団地は、南北約 3.1 km、 東西約 1.6 km、総面積約 3.9 km² である。

3. 周辺の環境保護区

15 環境省の定める自然保護地域(国立公園、国定公園、原生自然環境保全地域、自然環境保全地域等)のうち、隔離ほ場から最も近いのは、約35km離れた日光国立公園である。

20 4. 気象条件

① 平年値

隔離ほ場の最寄の気象情報観測地点である宇都宮地方気象台(栃木県宇都宮市明保野町1-4)における気象データの平年値を別紙2に示した。

気象庁ホームページ各種データ・資料ページ(アクセス:2018年1月9日) http://www.data.jma.go.jp/obd/stats/etrn/view/nml_sfc_ym.php?prec_no=41&bl ock_no=47615&year=2017&month=&day=&view=p1

30 ② 過去3年分の気象データ

宇都宮地方気象台における過去3年分(2015年~2017年)の気象データを別紙3に示した。

気象庁ホームページ各種データ・資料ページ(アクセス:2018年1月9日)

35 2015年の気象データ

http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=41&block_no=47615&year=2015&month=&day=&view=p1

2016年の気象データ

http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=41&block_no=47615&year=2016&month=&day=&view=p1

2017年の気象データ

http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=41&block_no=47615&year=2017&month=&day=&view=p1

5 5. 台風の襲来歴

10

25

① 平年値

気象庁ホームページによると、隔離ほ場のある関東甲信地方への台風接近数 7 の平年値は、3.1 個である(表 12、58 ページ)。

気象庁ホームページ各種データ・資料ページ(アクセス:2018年1月9日) http://www.data.jma.go.jp/fcd/yoho/typhoon/statistics/average/average.html

表 12 関東甲信地方(伊豆諸島及び小笠原諸島を除く)への台風接近数の平年値

	1月	2月	3 月	4 月	5月	6月	7月	8月	9月	10 月	11月	12 月	年間
接近数					0.0	0.2	0.4	0.9	1.1	0.6	0.0		3.1

15 平年値は、1981年から2010年の30年平均である。

空白の月は、平年値を求める統計期間内に該当する台風が一例もなかったことを示す。 接近は2か月にまたがる場合があり、各月の接近数の合計と年間の接近数とは必ずしも一致しない。

20 ② 過去 10 年の隔離は場周辺への台風接近数 気象庁ホームページによると、隔離ほ場のある関東甲信地方に、2007 年から 2016 年の間に接近した台風は、計 30 個である。

気象庁ホームページ各種データ・資料ページ(アクセス:2018年1月9日) http://www.data.jma.go.jp/fcd/yoho/typhoon/statistics/accession/kanto_koshin.h tml

- 6. 過去 10 年におけるほ場冠水の経験とその程度
- 30 2007年に隔離ほ場を建設して以来、冠水したことはない。
 - 7. 過去 10 年における強風の経験とその程度

2007年に隔離ほ場を建設して以来、強風による設備の被害はなく、植物体がほ 35 場外に飛ばされたこともない。

⁷⁾ 台風の中心が東京都、栃木県、群馬県、埼玉県、茨城県、千葉県、神奈川県、長野県、山梨県のいずれかの気象官署から 300km 以内に入った場合を「関東甲信地方(伊豆諸島及び小笠原諸島を除く)に接近した台風」としている(気象庁による定義)。

8. 市町村が策定するハザードマップ上の位置付け

隔離ほ場は、宇都宮市発行ハザードマップにおいて浸水想定区域や土砂災害警戒区域に指定されていない。

5

宇都宮市役所ホームページ、ハザードマップ(洪水・土砂災害)(アクセス: 2018 年 1 月 9 日)

http://www.city.utsunomiya.tochigi.jp/kurashi/anshin/bosai/1003241.html

10 9. 周辺地域における鳥獣害の発生状況

隔離は場周辺にカラス、スズメ、ネズミ及びウサギが見られるが、防鳥網や侵入防止柵の設置及び殺鼠剤や忌避剤を用い、これら鳥獣による被害回避を行っている。

VII. 隔離ほ場周辺の生物相

- 1. 遺伝子組換え農作物を隔離ほ場で栽培等を行うことによって、影響を受ける可能性のある野生動植物等及びその中に希少種が含まれる場合はその名称等
 - ① 影響を受ける可能性のある野生動植物等

コウチュウ目の昆虫。

10 ② ①の中に希少種が含まれる場合はその名称

コウチュウ目昆虫のうち、環境省レッドリスト 2017 ⁸に絶滅危惧種及び準 絶滅危惧種として掲載されているものは 275 種である。このうち、山本ほか (2003) ⁹の評価手法を参考に、本組換えトウモロコシの花粉飛散又は植物体 を腐植質と一緒に食餌することにより影響を受ける可能性のある種を検討し た結果、生息地及び食性の点から 4 種が特定された(別紙 4)。

- 2. 交雑可能な近縁野生種及びその中に希少種が含まれる場合はその名称等
- 20 該当なし。

5

⁸⁾ https://ikilog.biodic.go.jp/Rdb/booklist

⁹⁾ 山本勝利, 大黒俊哉, 松村雄. (2003). "III. 農業環境技術研究所における Bt トウモロコシ緊急調査 5. わが国における鱗翅目のレッドリスト掲載種への Bt トウモロコシ花粉の影響評価 農業環境研究叢書 第14号". 独立行政法人農業環境技術研究所. 茨城.

VIII. 栽培管理等

1. 栽培履歴

5 隔離ほ場における過去3年間の栽培履歴は以下のとおりである。

		<u> </u>	1H1 4 > VIXVATI VIS	
	栽培年	月		作物
	1月	_	4月	オオムギ
	5 月	_	11月	トウモロコシ*
2015年	6月	_	11月	テオシント
	7月	_	11月	ヒマワリ
	12月	_		オオムギ
	1月	_	4月	オオムギ
2016年	5月	_	10 月	トウモロコシ*
2010 +	6月	_	10 月	テオシント、ダイズ*
	12 月	_		オオムギ
	1月	_	4月	オオムギ
	5月	_	11月	トウモロコシ*
2017年	6月	_	11月	テオシント、ダイズ*
	7月	_	11月	ヒマワリ
	12 月	_		オオムギ

^{*}遺伝子組換え作物を含む。

2. 気象災害時の対応

10

20

気象災害が起こった場合、まず試験区域における被害状況を確認し、必要に応じ 回収等の拡散防止措置を行う。

15 3. 栽培終了後の利用計画(ボランティア植物の監視を含む)

本組換えトウモロコシの栽培終了後、休閑緑肥としてアルファルファ、麦等を栽培する予定である。今後とも隔離ほ場では、遺伝子組換えトウモロコシ又はダイズ等を栽培する計画である。なお、ボランティア植物の発生を確認した場合、直ちに隔離ほ場内に鋤込む等の適切な手段で不活化する。

4. 隔離ほ場試験における生物多様性影響の安全対策に関する措置

① 隔離ほ場の施設

5

10

20

25

30

- (1) 部外者の立入りを防止するため、隔離ほ場を取り囲むようにフェンスを設置している。
- (2) 隔離ほ場であること、部外者は立入禁止であること及び管理責任者の氏名を明示した標識を見やすい所に掲げている。
- (3) 隔離ほ場で使用した機械、器具、靴等に付着した土、本組換えトウモロコシの種子等を洗浄によって除去するための洗い場を設置しているとともに、当該トウモロコシの隔離ほ場の外への流出を防止するための設備を排水系統に設置している。
- (4) 本組換えトウモロコシの種苗が、野鳥等の食害により拡散することを防止するため、播種時及び成熟期から収穫期には防鳥網を設置する。

15 ② 隔離ほ場での作業要領

- (1) 本組換えトウモロコシ及び比較対象の非組換えトウモロコシ以外の植物が、隔離ほ場内で生育することを最小限に抑える。
- (2) 本組換えトウモロコシを隔離は場の外に運搬し、又は保管する場合は、 当該トウモロコシが漏出しない構造の容器に入れる。
- (3) (2)により運搬又は保管する場合を除き、本組換えトウモロコシの栽培終 了後は、当該トウモロコシ及び比較対象の非組換えトウモロコシを隔離 ほ場内にすき込む等により、確実に不活化する。
 - (4) 隔離ほ場で使用した機械、器具、靴等は、作業終了後、隔離ほ場内で洗 浄すること等により、意図せずに本組換えトウモロコシが隔離ほ場の外 に持ち出されることを防止する。
 - (5) 本組換えトウモロコシの花粉の飛散を防止するため、除雄又は雄穂の袋がけを行う。
 - (6) 隔離ほ場が本来有する機能が十分に発揮されるように、設備の維持及び管理を行う。
- (7) (1)から(6)までに掲げる事項を第一種使用等を行う者に遵守させる。
 - (8) 生物多様性影響が生ずるおそれがあると認められるに至った場合は、別に定める緊急措置計画書に基づき、速やかに対処する。

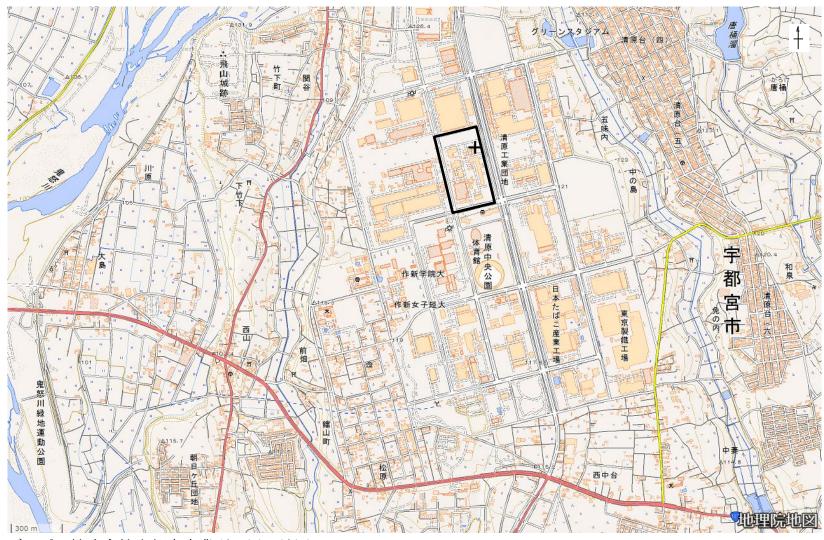


図 デュポン株式会社宇都宮事業所の周辺地図

デュポン株式会社 宇都宮事業所の所在地を四角で囲み、デュポン・プロダクション・アグリサイエンス株式会社 隔離ほ場の所在地を「+」で示した。この地図は、国土地理院長の承認を得て、同院発行の2 万5 千分1 地形図を複製したものである(承認番号 平29 情複、第600 号)。この地図を第三者がさらに複製する場合には、国土地理院の長の承認を得なければならない。

宇都宮 平年値(年・月ごとの値) 主な要素

THE T							**	40.11.00		- muh		A 41							$\overline{}$						
	気		降水量		気温		蒸気圧	相対湿度	風。同]•風速	日照時間	全天日射量		/=				大気現象							
要素	(hF	Pa)	(mm)		(°C)		(hPa)	(%)	(n	n/s)	(時間)	(MJ/m)		(cm)		雲量		2121000							
35 370	現地	海面	合計	平均	日最高	日最低	平均	平均	平均	最多風向	合計	平均	路	降雪の深さ		降雪の深さ				降雪の深さ		平均	雪日数	霧日数	雷日数
	平均	平均		T-1-3	山坂間	口政化	T-1-9	7	7	取罗幽門		T-49	合計	日合計の最大	最深積雪	T-29	当口奴	粉口双	田口奴						
統計期間	1981~	1981~	1981~	1981~	1981~	1981~	1981~	1981~	1981~	1990~	1981~	1981~	1981~	1981~	1981~	1981~	1981~	1981~	1981~						
初而一州四	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010						
資料年数	30	30	30	30	30	30	30	30	30	21	30	30	30	30	30	30	30	30	30						
1月	998.5	1016.0	33.9	2.5	8.3	-2.7	4.5	62	2.9	北北東	204.8	9.4	10	4	5	4.2	5.6	1.1	0.0						
2月	998.3	1015.8	42.9	3.3	9.1	-1.9	4.6	60	3.0	北北東	186.2	11.7	10	6	6	5.0	6.1	1.2	0.2						
3月	998.4	1015.6	88.4	6.8	12.6	1.5	6.0	61	3.2	北北東	187.9	13.8	5	3	3	6.2	3.6	1.2	0.5						
4月	997.6	1014.4	120.5	12.5	18.5	7.0	9.3	64	3.2	北北東	179.5	16.0	0	0	0	6.6	0.6	1.8	1.7						
5月	995.6	1012.1	146.6	17.2	22.5	12.5	13.6	70	3.0	北北東	166.9	16.7				7.6	0.0	1.7	3.2						
6月	993.3	1009.5	174.7	20.6	25.2	16.9	18.5	77	2.7	北北東	112.1	14.2				8.6	0.0	1.4	3.2						
7月	992.9	1008.9	205.8	24.2	28.7	20.8	23.8	80	2.6	北北東	114.1	14.1				8.7	0.0	1.5	5.3						
8月	994.3	1010.2	209.8	25.6	30.5	22.2	25.5	78	2.8	北北東	138.9	14.6				8.1	0.0	0.7	6.4						
9月	997.1	1013.3	220.4	21.9	26.4	18.4	20.4	77	2.8	北北東	112.2	11.6				8.2	0.0	1.2	2.8						
10月	1000.1	1016.8	146.5	16.1	20.9	11.8	13.6	74	2.9	北北東	145.0	10.4				6.9	0.0	1.2	1.0						
11月	1001.3	1018.3	68.1	10.1	15.5	5.0	8.9	71	2.6	北北東	164.5	8.8				5.4	0.1	2.0	0.3						
12月	999.8	1017.1	35.5	4.9	10.7	-0.3	5.8	66	2.6	北北東	199.1	8.3	3	2	2	4.0	2.0	1.4	0.2						
年	997.3	1014.0	1493.1	13.8	19.1	9.3	12.9	70	2.9	北北東	1911.3	12.5	28	9	10	6.6	17.9	16.4	24.8						

宇都宮 2015年(月ごとの値) 主な要素

	Т	気圧(hPa)					気温 (℃)						(%)		厘	向・風速(m/s)		日照	全天日射量	雪 (cm)			雲量		大気現象	
月	3	現地	海面	合計		最大			平均		最高	最低	平均	- 基小	平均	最为	大風速	最大	瞬間風速	時間	(MJ/m²)		降雪	- 最深積電		番の様	霧日数	委旦数
	3	平均	平均		H	1時間	10分間	日平均	日最高	日最低	取開	极地	十四	吸小	風速	風速	風向	風速	風向	(h)	平均	合計	日合計の最大	取床很會	十码	当口奴	粉口奴	田口奴
1	9	997.8	1015.2	55.5	22.5	6.0	1.5	3.2	8.8	-1.6	15.0	-5.0	58	18	2.9	14.2	西北西	20.4	西北西	204.6	9.7	5	5	5	4.5	6	2	0
2		998.1	1015.4	42.0	14.5	5.5	1.5	3.7	8.9	-0.7	17.3	-4.8	61	12	3.0	13.3	北西	20.1	北西	185.6	11.9	-			5.0	4	3	0
3	9	999.7	1016.7	79.0	28.5	7.0	2.0	8.5	14.5	3.1	23.7	-1.1	54	9	3.3	15.3	西北西	21.8	西北西	204.8	15.5	I	-		5.3	1	1	1
4	10	000.1	1016.9	96.0	19.5	4.5	2.0	13.6	19.3	8.3	30.1	0.6	67	13	2.9	10.8	南	16.9	南南西	153.5	15.4	3	3	2	7.4	1	3	2
5	9	993.6	1009.8	90.5	26.0	11.5	7.0	20.2	26.4	14.6	31.2	7.2	57	- 11	3.0	10.2	北	15.0	東北東	250.5	22.2	I	-		6.4	0	0	1
6	9	992.5	1008.6	153.5	24.5	11.0	6.0	21.4	26.1	17.8	31.6	13.0	73	19	2.8	10.0	北	14.3	北	119.7	15.8	-			9.0	0	1	5
7	9	993.5	1009.4	349.0	141.0	33.5	21.5	25.6	30.3	22.1	36.2	17.9	77	31	2.5	11.1	南南西	19.3	南南西	160.1	16.6	I	-		7.9	0	1	7
8	9	993.9	1009.8	101.5	22.0	9.5	6.5	25.4	29.7	22.4	36.5	16.8	76	36	3.3	13.7	北北西	22.2	北西	120.6	13.9	-			8.4	0	0	4
9	9	996.6	1012.8	423.5	177.5	46.5	15.5	21.4	25.5	18.4	30.7	12.1	76	25	2.9	11.6	東南東	17.0	南東	102.9	11.7	-			8.7	0	0	3
10	9	999.1	1015.7	49.5	21.5	10.0	5.0	16.7	21.8	12.3	29.2	4.5	65	19	2.8	12.3	北北西	17.4	北東	204.6	13.2	-			6.3	0	1	0
11	10	004.7	1021.6	149.5	37.5	11.5	4.5	12.3	16.3	8.7	21.9	2.0	75	22	2.7	11.9	北北東	17.0	北東	119.0	7.5				7.2	0	2	0
12	10	002.3	1019.5	61.5	52.0	10.5	4.0	7.2	12.4	2.4	19.2	-3.4	61	18	2.8	13.4	北	21.9	北	196.0	8.9				4.3	0	0	0

宇都宮 2016年(月ごとの値) 主な要素

	気圧	hPa)		隆水	量(mm)			\$	[温(℃)			湿度	(96)		周	向·風速(m/s)		日照	全天日射量	雪(cm)			雲量		大気現象	
月	現地	海面	合計	14.2	最大			平均	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	最高	最低			平均		大風速		舜間風速	時間	(MJ/m²)		降雪 最深積雪				霧日数	
	平均	平均		日	1時間	10分間	日平均	日最高	日最低	取同	政队	中国	政小	風速	風速	風向	風速	風向	(h)	平均	合計	日合計の最大	取床恨当	十四	当口奴	粉口蚁	田口奴
1	999.1	1016.5	40.5	22.5	4.0	1.5	3.4	9.3	-1.6	15.4	-6.2	60	15	2.8	12.4	西	19.1	北北東	211.0	10.1	12	6	6	4.2	9	1	0
2	1001.6	1019.0	34.5	15.0	5.0	1.5	4.7	11.0	-0.4	21.5	-4.3	61	16	2.9	12.3	北	17.7	北北西	193.4	12.8	4	2	4	5.0	7	1	0
3	1002.0	1019.1	57.0	18.0	7.5	5.5	8.4	14.1	3.5	20.6	-3.8	60	- 11	2.9	11.9	北西	19.0	北西	177.5	14.5				6.9	3	1	1
4	997.1	1013.7	135.0	41.0	7.5	4.0	13.8	19.5	8.9	25.4	2.9	65	13	3.2	14.1	南	24.2	南	157.2	15.8				7.8	0	2	1
5	997.0	1013.3	88.0	35.0	13.0	3.5	19.2	25.0	14.1	31.7	9.5	63	14	3.2	10.8	南	17.3	南南西	193.1	19.0				7.7	0	1	1
6	993.3	1009.4	111.0	35.0	6.5	1.5	21.7	26.3	17.8	32.6	10.4	71	19	3.0	12.8	北	18.3	北	141.9	16.5				8.1	0	0	0
7	994.2	1010.2	81.0	15.0	10.0	4.5	24.2	28.8	20.9	33.6	17.9	78	32	2.5	10.7	東北東	16.7	東	100.0	14.0				8.8	0	1	2
8	989.5	1005.3	431.5	128.0	83.0	20.0	26.2	31.4	22.8	36.2	19.7	76	34	3.5	15.4	北北東	23.1	北	144.3	15.8				8.4	0	0	8
9	997.7	1013.7	399.5	108.0	51.5	14.0	23.3	27.2	20.4	33.6	14.7	81	38	3.0	10.8	北北東	15.5	北	90.9	11.3				9.2	0	1	5
10	1001.2	1017.8	65.0	41.0	6.5	1.5	17.1	21.7	13.0	30.8	6.0	69	21	2.3	8.4	南西	11.1	西南西	146.8	10.8				7.4	0	2	0
11	1002.4	1019.4	91.5	45.0	9.5	2.0	9.5	14.6	4.7	19.7	-1.7	71	22	2.3	10.5	北	14.9	北	163.6	9.3	5	5	4	6.0	1	3	0
12	1000.9	1018.2	57.0	24.5	7.0	2.0	6.0	12.1	0.5	17.8	-4.4	63	18	2.7	12.9	北北東	19.7	北北東	216.6	9.5				4.0	0	3	0

宇都宮 2017年(月ごとの値) 主な要素

	気圧	(hPa)		降水	(量(mm)			贡	[温(℃)			湿度	(%)		屈	向·風速(m/s)		日照	全天日射量	雪(cm)		雲量		大気現象		
月	現地	海面	合計		最大			平均		息宣	最低	亚帕	是小	平均	最为	大風速	最大問	舜間風速	時間	(MJ/m²)		降雪最深積雪		平均	雪日数	霧日数	雲口数
	平均	平均		H	1時間	10分間	日平均	日最高	日最低	AX (III)	极地	T-29	級小	風速	風速	風向	風速	風向	(h)	平均	合計	日合計の最大	取休银雪	T-2-3	当口奴	粉山双	田口奴
1	997.9	1015.3	18.0	8.0	3.0	0.5	3.1	9.4	-1.9	17.2	-6.4	57	15	3.1	11.9	西	19.3		223.4	10.5	1	1	1	4.0	7	0	0
2	996.8	1014.1	7.5	3.5	1.0	0.5	4.3	10.8	-1.2	20.3	-5.3	48	12	3.2	14.6	西北西	22.2	西北西	222.3	14.1	2	2	2	4.2	6	2	0
3	997.5	1014.6	61.0	30.0	6.0	1.5	6.6	12.3	1.3	18.2	-3.1	56	10	3.1	13.9	北	21.2	北	193.3	14.9				6.3	3	2	0
4	996.1	1012.8	111.5	34.5	8.5	2.0	13.2	19.7	7.7	27.7	2.0	60	9	3.3	15.3	西北西	22.5	西北西	208.6	18.7				7.0	0	0	4
5	996.1	1012.5	83.5	44.5	11.0	6.0	19.1	24.4	14.2	32.3	6.9	67	12	3.0	10.7	西北西	15.9	西北西	190.1	18.3				7.1	0	1	3
6	992.4	1008.5	127.5	75.0	22.5	5.5	20.9	26.1	16.7	29.9	11.2	69	19	2.8	14.1	西北西	19.4	西北西	153.5	18.4	-			8.2	0	0	6
7	993.1	1009.0	188.5	72.0	39.0	10.0	26.4	31.2	22.9	34.6	20.1	78	34	2.7	13.0	北東	17.9	北東	132.7	16.3	-			8.1	0	0	6
8	992.0	1008.0	210.0	53.0	30.0	12.5	25.1	29.2	22.2	36.1	19.1	83	38	2.6	10.4	東北東	15.3	西北西	54.0	11.0				9.7	0	1	4
9	995.7	1011.8	112.0	24.0	7.5	3.0	21.9	26.8	18.0	33.5	12.7	77	24	2.9	14.2	南南東	21.3	北	148.9	14.3				7.9	0	1	1
10	1002.2	1018.8	343.5	95.5	30.5	7.0	15.7	19.8	12.3	28.1	3.6	83	28	3.0	15.5	北	22.4	北	101.7	8.8	-			8.0	0	1	1
11	1000.8	1017.8	34.0	18.5	3.5	1.0	9.6	15.5	4.3	22.1	-0.6	72	21	2.5	13.1	北西	18.7	北西	181.0	9.9	-			5.0	0	2	1
12	999.0	1016.4	10.5	5.5	2.0	1.0	3.8	10.1	-1.3	14.0	-4.7	68	22	2.7	12.6	西南西	17.2	西	225.9	9.6				3.7	3	3	0

影響を受ける可能性が否定できない絶滅危惧種及び準絶滅危惧種に区分されているコウチュウ目昆虫

和名	学名	生息地、生息環境	食餌
絶滅危惧 IA 類(CR)			
アオノネクイハムシ	Donacia frontalis	本州(兵庫県)。発見地の青野ヶ原では絶滅した可能性がある。ま	カヤツリグサ科ハリイ類
		た、これ以外の産地も記録されていない。生息環境は丘陵地の湿地。	
絶滅危惧 II 類(VU)			
オキナワサビカミキリ	Diboma costata	九州、屋久島、種子島、トカラ列島、奄美諸島、沖縄諸島、先島諸	イネ科タケ類
		島。	
準絶滅危惧 (NT)			
アカガネネクイハムシ	Donacia hirtihumeralis	本州(青森県、岩手県、栃木県、茨城県)。本州固有種。生息環境は	カヤツリグサ科フトイ
		ため池。	
キンイロネクイハムシ	Donacia japana	北海道、本州、九州。生息環境はため池、水路。	ミクリ科ミクリ類。成虫は
			スゲ類に訪花する。

出典:

上野 俊一·野澤 良彦·佐藤 正孝 1984 原色日本甲虫図鑑 (II) 保育社

大林 延夫・新里 達也 編著 2007 日本産カミキリムシ 東海大学出版会

環境省自然環境局野生生物課 レッドリスト 2017 https://ikilog.biodic.go.jp/Rdb/booklist [Accessed Mar, 2018]

環境省自然環境局野生生物課 改訂レッドリスト 付属説明資料 昆虫類 平成22年3月

https://ikilog.biodic.go.jp/rdbdata/files/explanatory_pdf/21insect.pdf [Accessed Mar, 2018]

小島 圭三·林 匡夫 1969 原色日本昆虫生態図鑑 I 保育社

栃木県 2005 レッドデータブックとちぎ http://www.pref.tochigi.lg.jp/shizen/sonota/rdb/index.html [Accessed Mar, 2018]

中根 猛彦・大林 一夫・野村 鎮・黒沢 良彦 2007 新訂・原色昆虫大図鑑 II (甲虫編) 北隆館

日外アソシエーツ編 2005 昆虫レファレンス事典Ⅰ 日外アソシエーツ

日外アソシエーツ編 2011 昆虫レファレンス事典Ⅱ 日外アソシエーツ

野尻湖昆虫グループ 1985 アトラス・日本のネクイハムシー化石同定への手引きー 野尻湖昆虫グループ

林 匡夫・木元 新作・森本 桂 1984 原色日本甲虫図鑑 (IV) 保育社

林 成多 2005 日本産ネクイハムシ図鑑-全種の解説- 月刊むし 408:2-18

林 成多 2012 日本のネクイハムシ むし社

福井県 2002 福井県レッドデータブック(動物編) http://www.erc.pref.fukui.jp/gbank/rdb/rdbindex.html [Accessed Mar, 2018]

添付資料一覧

- 1. (社外秘情報につき非開示)
- 5 2. (社外秘情報につき非開示)
 - 3. (社外秘情報につき非開示)
- 4. 影響を受ける可能性が否定できない絶滅危惧種及び準絶滅危惧種に区分されて 10 いるコウチュウ目昆虫.